• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

暖风器及其相关蒸汽和疏水系统设计研究

胡玲玲

胡玲玲. 暖风器及其相关蒸汽和疏水系统设计研究[J]. 南方能源建设, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
引用本文: 胡玲玲. 暖风器及其相关蒸汽和疏水系统设计研究[J]. 南方能源建设, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
Lingling HU. Research on the Air Heater and Relevant Steam/Water System[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
Citation: Lingling HU. Research on the Air Heater and Relevant Steam/Water System[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008

暖风器及其相关蒸汽和疏水系统设计研究

doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
详细信息
    作者简介:

    胡玲玲(通信作者) 1975-,女,湖北武汉人,高级工程师,双学士,主要从事火电厂热机、脱硫等设计工作(e-mail)610282431 @qq.com。

  • 中图分类号: TK223.34

Research on the Air Heater and Relevant Steam/Water System

图(4) / 表 (1)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  83
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-01
  • 修回日期:  2017-09-07
  • 刊出日期:  2018-12-25

暖风器及其相关蒸汽和疏水系统设计研究

doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
    作者简介:

    胡玲玲(通信作者) 1975-,女,湖北武汉人,高级工程师,双学士,主要从事火电厂热机、脱硫等设计工作(e-mail)610282431 @qq.com。

  • 中图分类号: TK223.34

摘要:   [目的]  针对目前多个火电厂一次风机和送风机进出口的暖风器运行中存在的极端低温情况下暖风器出口风温偏小、管道振动、疏水不畅等问题,提出解决方案。  [方法]  文章拟通过对几个工程暖风器及其关的汽水系统和布置设计与实际运行情况进行分析比较。  [结果]  在技术规范书编制时要求厂家核算在极端低温环境温度下暖风器的面积要满足空预器冷端风温要求。在施工图设计阶段,应优化暖风器汽水系统,使其达到便于控制和节能的要求;暖风器宜高位布置,让暖风器本体疏水能通过自流的方式到达疏水排放点;在调试阶段,对于疏水管道布置存在U型时,在启动初期、疏水压力不足时在低位点设放水管。在运行维护阶段,需要充分利用控制系统,把暖风器的疏水和风温控制结合起来,确保系统安全、稳定、经济运行。  [结论]  文章的中分析和研究是基于理论和其它工程优化的案例进行的,有实际应用价值,可供其它工程参考。

English Abstract

胡玲玲. 暖风器及其相关蒸汽和疏水系统设计研究[J]. 南方能源建设, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
引用本文: 胡玲玲. 暖风器及其相关蒸汽和疏水系统设计研究[J]. 南方能源建设, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
Lingling HU. Research on the Air Heater and Relevant Steam/Water System[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
Citation: Lingling HU. Research on the Air Heater and Relevant Steam/Water System[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 55-59. doi: 10.16516/j.gedi.issn2095-8676.2018.04.008
  • 燃料中硫份燃烧后生成SO2和SO3,与烟气中的水蒸气相互作用,在温度低于烟气露点时,结露凝聚于锅炉尾部受热面上,造成空气预热器的低温受热面金属腐蚀,同时产生积灰。为防止空气预热器低温腐蚀或堵灰,宜按实际需要情况设置空气预热器入口空气加热系统,根据技术经济比较可选用暖风器、热风再循环或其他空气加热系统[1]

    当锅炉厂要求空预器入口空气温度比较高,采用热风再循环难以满足满足空预器入口风温要求或采用热风再循环不经济时,需要增设暖风器。几个电厂的暖风器设计参数及运行情况如表1所示,实际运行中经常出现暖风器出口风温难以达到设计要求[2]、疏水不畅、疏水管道振动、疏水泵汽蚀、调节阀难以达到很好的调节效果、疏水热能不能充分利用等问题。

    本文通过对暖风器实际运行中出现的几个问题进行探讨,提出合理的设计方案和解决措施。

    • 暖风器入口风温是暖风器设计的一个重要参数,按照《GB 50660—2011大中型火力发电厂设计规范》:“选择暖风器所用的环境温度,对采暖地区宜取用冬季采暖室外计算温度,对非采暖区宜取用冬季最冷月平均温度,并适当留有加热器面积”[1],但是在实际运行中发现有严寒地区暖风器出口风温不满足空预器入口温度的要求。

      新疆中泰电石化学工程位于新疆维吾尔自治区吉州阜康市,每年的10月到第2年3月均需要采暖,平均气温介于-20.4~3.0 ℃,历年极端最低温度-37 ℃。为防止冬季及低负荷时空气预热器的冷端元件低温腐蚀,在一次风机、送风机的入口设置有暖风器,以提高冷风进入空气预热器的温度。暖风器为可旋转式暖风器,暖风器的进风温度按冬季采暖室外计算温度-17 ℃设计,在设计选型上是满足GB 50660设计规范要求的。在设计回访阶段时业主反馈实际运行煤质与设计煤质相差较大,暖风器出口风温不能满足系统设计要求。业主通过增加一级暖风器也即增加换热面积来满足实际运行的要求。

      在后续的新疆托克逊工程位于新疆吐鲁番地区,每年的11月到第2年3月均需要采暖,平均气温介于-7.5~3.2 ℃,历年极端最低温度-21.8 ℃,送风机入口暖风器的进风温度按历年极端最低温度-21.8 ℃设计。经咨询电厂运行情况,暖风器出口风温能满足要求,暖风器的调节性能良好。

      新疆轮台工程位于天山南麓,为典型的暖温带大陆性干旱气候,平均气温为11.1 ℃,历年极端最低温度-25.5 ℃,暖风器的进风温度按冬季采暖室外计算温度-11 ℃,暖风器出口空气温度30 ℃。经咨询电厂暖风器的运行情况,暖风器出口风温能满足系统设计要求。

      查阅技术协议,托克逊和轮台的暖风器是同一个生产厂家,单位温升下单位风量所需的换热量相当,也即轮台工程暖风器的换热面积是综合考虑了极端最低温度的。电石工程暖风器是另一个厂家,其单位温升下单位风量的换热量只有托克逊和轮台的70%。

      通过上述几个严寒地区和非严寒地方暖风器的实践经验,建议在今后技术规范书编制时,对于严寒地区,要求暖风器的进风温度取当地的冬季采暖室外计算温度,出口温度取锅炉设计要求的冷端温度;在计算暖风器的面积时要留有20%~30%的裕量,以弥补由于制造和计算中出现的偏差;还应验证在极端最低环境空气温度时,暖风器的温升应满足空预器入口风温要求[3]

    • 暖风器风温的调节方式主要有2种,一种是汽侧设调节阀,疏水侧设疏水阀;另一种是疏水侧调节[4]

      汽侧调节通过调节暖风器的加热蒸汽量来调节空气预热器空气入口壁温。汽侧调节的蒸汽,比容大,容积通流量较大,调节阀的口径较大,调节阀的开关行程也较大,其调节精度较高。但由于蒸汽调节为节流调节,在减少蒸汽量的同时,蒸汽压力降低后,其对应的饱和温度也随之降低,节流造成热能损失后再进行传热,由此需要增大暖风器换热面积。另外,对于每台炉设2台暖风器的,由于蒸汽管道到2台暖风器的距离不同,阻力也相差较大,建议对每台暖风器各设一个调节阀,或者通过管道布置,把从汇合母管至每台暖风器的阻力相当,以便到2台暖风器的汽量相当。汽侧调节暖风器汽水去除氧器和去扩容器的系统图分别如图1图2所示。

      图  1  汽侧调节暖风器汽水系统图(去除氧器)

      Figure 1.  Steam conditioning for steam air heater system (to deaerator)

      图  2  汽侧调节暖风器汽水系统图(去扩容器)

      Figure 2.  Steam conditioning for steam air heater system (to blowdown flash vessel)

      水侧调节通过调节暖风器中凝结水水量来调节空气预热器空气入口金属壁温。水调节的是疏水,比容较蒸汽大大减小,容积通流量就减小很多,阀门开关行程就很小,调节精度会有所降低。但由于暖风器中的蒸汽压力始终是供汽压力,所以饱和温度不变,有利于选择更低压力的蒸汽汽源,进一步提高汽轮机抽汽回热的效率。为避免暖风器中的凝结水滞留在暖风器内引发的锈蚀、水击、振动等问题,暖风器疏水不能采用热静力型自动疏水器,宜采用机械疏水器,而且其出力要留一定的裕量[4]。水侧调节暖风器去扩容器的系统图如图3所示。

      图  3  水侧调节暖风器系统图(去扩容器)

      Figure 3.  Water conditioning for steam air heater system (to blowdown flash vessel)

      目前,中国电力工程顾问集团中南电力设计院设计的汽水调节方式主要是在汽侧调节,通过不完全调研,汉川、织金等工程反馈运行状态良好。委内瑞拉工程由于暖风器和疏水箱之间的压差不够以及只在每台炉去2台暖风器的蒸汽母管上设有流量调节阀,而去每台暖风器的流动阻力相差较大,造成2个暖风器的疏水压力不一致等原因造成暖风器疏水不畅,形成水击。但是大别山二期司令图审查时业主明确要求暖风器的调温方式为水侧调节。参考七台河运行经验,在暖风器设计中设计一疏水冷却段,通过控制暖风器疏水水位,将疏水温度调节到接近或低于汽机排气温度,疏水可直接排至暖风器[5],而且可以达到很好的节能效果。

      为了减少由于蒸汽经过暖风器时可能形成汽液两相流对设备的冲击和系统运行不稳定,减少厂用汽量,当有合适的热水作为热源时,建议暖风器的加热介质尽量从热水端取水,当压力不满足要求时,增设管道增压泵。热水加热暖风器系统图如图4所示。

      图  4  热水加热暖风器系统图

      Figure 4.  Hot water for steam air heater system

    • 目前暖风器疏水系统主要有如下去向:

      一是低压疏水。当水质不合格时将暖风器疏水导入疏水扩容器,当水质合格后直接导入凝汽器[6]:这种方案的优点是系统简单,但是暖风器疏水直接导至凝汽器会加大凝汽器循环水侧负荷影响真空,同时产生热量损失,不符合节能减排的要求。轮台工程暖风器疏水引至锅炉启动疏水扩容器预留接口处。由于布置的原因,从暖风器疏水箱至扩容器有一个U型,在启动调试阶段,疏水压力较低时需要设置低位点放水,待疏水压力上升到可以顺畅至凝汽器时再关断放水管,让疏水直接去扩容器。但是直接排至扩容器的热损失较大。按照每年11月开始进入冬季到下一年4月冰雪开始融化,暖风器运行5个月,暖风器疏水饱和温度下的焓值H=632 kJ/kg,按照每天满负荷运行20 h、每月30天计,每年浪费约970 t煤,但同时需要多耗用16.5×104度电。由此可见,疏水排至凝汽器是不节能的[7]!

      二是高压疏水。将暖风器疏水导入暖风器疏水箱,当水质不合格时排至疏水扩容器,当水质合格后通过疏水泵排至除氧器:这种方案的优点是暖风器疏水的热量能回收利用,但是系统复杂,如果疏水箱和疏水泵布置不合理或疏水控制不好,容易发生疏水不畅、疏水泵汽蚀、管道振动等问题。

      委内瑞拉工程由于空预器入口设有空气旁路,在每台送风机出口、空预器入口、联络风道及旁路风道至烟气再循环风机处均设有风门,综合考虑空预器入口弯头、风门、变径管等布置,暖风器只能布置在送风机出口水平段上,暖风器疏水口标高约为0.275 m,暖风器疏水箱和疏水泵布置在锅炉房区域0 m,疏水箱疏水入口标高为5.966 m,暖风器疏水至疏水箱之间存在高差近6 m的垂直U型布置,疏水不能自流到疏水箱内,不能满足疏水泵的汽蚀余量的要求,导致疏水管道振动、疏水不畅等。

      新疆电石、新疆托克逊等工程设有暖风器疏水箱和泵,暖风器布置在一次风机和送风机入口,属于高位布置。暖风器疏水能自流到暖风器疏水箱,疏水泵在充分考虑满足泵汽蚀的情况,水质合格后要排至除氧器,疏水还是很顺畅的。

      对于设有高压疏水的系统,在布置设计时应尽量让暖风器高位布置,使其疏水能自流到疏水箱,疏水箱的安装高度还应满足疏水泵汽蚀余量的要求[8],把系统设计和布置设计充分结合起来,才能从源头上得以解决暖风器的疏水问题。

    • 本文通过几个电厂暖风器运行情况反思暖风器选型、系统和布置设计的合理性,系统设计对于保证暖风器能达到空预器入口风温的要求、调节的准确性、节能减排等非常重要。

      在技术规范书编制时,要求厂家核算在极端低温环境温度下暖风器的面积,要满足空预器冷端风温要求。

      布置设计是实现系统设计的需求,暖风器及其疏水安全、稳定运行是电厂正常运行的基本要求。暖风器的布置位置对暖风器疏水系统的可靠性有很大的影响,无论暖风器是布置在风机入口还是风机出口,暖风器尽量高位布置,让暖风器本体疏水能通过自流的方式到达疏水箱。对于不设疏水箱的系统,管道布置存在U型时,在启动初期、疏水压力不足以排至疏水箱时,需要在低位点设放水管,待压力足以把疏水顺利排至暖风器疏水箱时,再关闭放水管。为了系统安全可靠运行,当有合适的热水作为热源时,建议采用合适的热水加热暖风机器。

      在运行维护阶段,需要充分利用控制系统,把暖风器的疏水和风温控制结合起来,确保系统安全、稳定运行。

  • 参考文献 (8)

    目录

      /

      返回文章
      返回