-
我国向世界庄严承诺了到2030年的温室气体减排目标,国家把积极发展新能源作为能源战略的重要方向。截止2018年底,中国海上风电累计并网容量达到3.58 GW,已核准项目容量达到17.10 GW,在建项目达到6 GW,海上风电产业链也逐步建设和发展起来。
根据广东省海上风电发展规划修编成果,到2020年底前全省开工建设海上风电装机容量12 GW以上,总投资约2 000亿元,将建成投产2 GW以上。到2030年底将建成30 GW,占2020年到2030省内新增发电装机规模的1/3以上。海上风电产业成为广东省国际竞争力强的优势产业之一。
由于海上风电场分布广阔、海上气候环境恶劣,风电场的运行巡检工作十分困难,按照陆上风电场的运行管理模式经营管理海上风电场是不现实的。海上升压站按“无人值守”原则设计,在陆上集控中心设置集控室,实现对风电机组及升压设备、海上升压站和陆上集控中心主要电气设备的集中监视和控制[1,2,3,4]。因此,为了确保海上风电场安全、稳定、经济运行,必须建设一套完善、可靠的海上风电场监控系统,实现海上风电场的智能化运营。
同时,智慧型海上风电场应能采用智能设备的应用,实现海上风电场信息数字化、通信平台网络化、信息共享标准化,具备完善的海上风电场监控功能和设备状态监测,从而达到降低建设运行成本、提高上网发电量、延长设备寿命和确保人员安全的目的。因此,本文根据海上风电场的实际情况,并考虑了二次安防的相关规定,以及生产监控与运营管理的需求,分析了智慧型海上风电场一体化监控系统体系架构、功能要求、数据处理以及安全分区,将海上风电机组及其升压设备、海上升压站、陆上集控中心的监控系统进行了整体统一规划设计[5,6,7,8]。
Design of Smart Offshore Wind Farm Integration Monitoring System
-
摘要:
[目的] 针对海上风电场的运行管理情况,整合了海上风电机组、海上升压站、陆上集控中心的监控系统,提出了全面的智慧型海上风电场一体化监控系统方案。 [方法] 方案分析了其体系架构、功能要求、数据处理以及安全分区,以实现风电场海上升压站无人值守,陆上集控中心少人运行的运营模式。方案有效地整合了风机监控、升压站监控、视频及环境监控、风电功率预测、海缆故障监测、设备状态监测等多个子系统。 [结果] 对海上风电场内各主要电气设备提供了完善的监控功能,可实现运行监视、操作与控制、信息综合分析与智能告警、运行管理、辅助功能这五大应用。 [结论] 方案可有效降低风电场运营成本,达到技术先进、功能完备、性能可靠、经济合理的智能化运营要求。 Abstract:[Introduction] According to the actual operation of offshore wind farms, this paper has been integrate the monitoring systems of offshore wind, offshore substation, and onshore centralized control center. This paper proposes the smart offshore wind farm integration monitoring system. [Method] This article analyzed the system architecture, functional requirements, data processing, and security partitioning. In this way, the operation mode in which the offshore substation for a wind farm offshore wind farm was unattended and a land-based centralized control center was operated by few people can be achieved. The system showed that the several subsystems such as wind monitoring, offshore substation monitoring, video and environmental monitoring, wind power forecasting, cable fault monitoring, and equipment condition monitoring systems had been effectively integrated. [Result] It can provide complete monitoring functions for major electrical equipment, which can realize operational monitoring, operation and control, comprehensive information analysis and intelligent alarms, operation management, and assistance for these five applications. [Conclusion] Therefore, it can reduce the operating costs of wind farms and achieve the goals of advanced technology, complete function, reliable performance and economical rationality. -
-
[1] 中华人民共和国国家发展和改革委员会. 风力发电场设计技术规范:DL/T 5383—2007 [S]. 北京:中国电力出版社,2007. National Development and Reform Commission. Technical code of wind power plant design: DL/T 5383—2007 [S]. Beijing: China Electric Power Press, 2007. [2] 中国国家标准化管理委员会. 风电场接入电力系统技术规定:GB/T 19963—2011 [S]. 北京:中国标准出版社,2011. China Standardization Administration of China. Technical rule for connecting wind farm to power system: GB/T 19963—2011[S]. Beijing: China Standard Press, 2011. [3] 国家能源局.风电场工程110 kV~220 kV海上升压变电站设计规范:NB/T 31115—2017 [S]. 北京:中国标准出版社,2017. National Energy Board. Code for 110 kV~220 kV offshore substation design of wind power projects: NB/T 31115—2017 [S]. Beijing: China Standard Press, 2017. [4] 中华人民共和国住房和城乡建设部. 海上风力发电场设计规范(送审版) [S]. 北京:中国标准出版社,2017. Ministry of Housing and Urban-Rural Development of the People′s Republic of China. Design code for offshore wind farm (Send review version) [S]. Beijing: China Standard Press, 2017. [5] 国家电网公司. 智能变电站一体化监控系统建设技术规范:Q/GDW 679—2011 [S]. 北京:中国电力出版社,2011. State Grid Corporation. Technical specifications for construction of integrated supervision and control system of smart substation: Q/GDW 679—2011 [S]. Beijing: China Electric Power Press, 2011. [6] 国家电力监管管理委员会. 电力二次系统安全防护规定:国家电力监督管理委员会令第5号 [S]. 北京:中国电力出版社,2005. State Electricity Regulatory Commission. Regulations on the protection of secondary power systems:State Electricity Regulatory Commission Order No.5 [S]. Beijing: China Electric Power Press, 2005. [7] 樊陈,倪益民,窦仁晖,等. 智能变电站一体化监控系统有关规范解读 [J]. 电力系统自动化,2012,36(19): 1-5. FAN C, NI Y M, DOU R H, et al. Interpretation of relevant specifications of integrated supervision and control systems in smart substations [J]. Automation of Electric Power Systems, 2012, 36(19): 1-5. [8] 寇兴魁. 风电场管理信息系统的设计与实现 [D]. 成都:电子科技大学,2013. [9] 徐龙博,李煜东,汪少勇,等. 海上风电场数字化发展设想 [J]. 电力系统自动化,2014,38(3): 189-193+199. XU L B, LI Y D, WANG S Y, et al. Digital development assumptions of offshore wind farms [J]. Automation of Electric Power Systems, 2014, 38(3): 189-193+199. [10] 杨源,周伟,汪少勇,等. 海上风电场的火灾防护方案设计[J]. 南方能源建设,2015, 2(增刊1): 93-97. YANG Y, ZHOU W, WANG S Y, et al. Fire protection design of offshore wind farm [J]. Southern Energy Construction, 2015, 2(Supp.1): 93-97. [11] 万黎升,曹洋,闫照云. 风电场群远程集中监控与生产管理系统设计 [J]. 江西电力,2016,40(6): 13-17. WAN L S, CAO Y, YAN Z Y. Design of remote centralized monitoring and production management system for wind farms [J]. Jiangxi Electric Power, 2016,40(6): 13-17. [12] 刘刚,笃峻,金岩磊. 风电场远程监控中心关键技术探讨 [J]. 电气技术,2016(3): 69-73. LIU G, YU J, JIN Y L. Research on the remote monitoring center of wind power plant [J]. Electrical Engineering, 2016(3): 69-73. [13] 刘吉成,何丹丹,龙腾. 适应能源互联网需求的风力发电数据集成研究 [J]. 电网技术,2017,41(3): 978-984. LIU J C, HE D D, LONG T. Research on data integration of wind power to meet energy internet demand [J]. Power System Technology, 2017, 41(3): 978-984. [14] 傅质馨,袁越. 海上风电机组状态监控技术研究现状与展望 [J]. 电力系统自动化,2012,36(21): 121-129. FU Z X, YUAN Y. Status and prospection condition monitoring technologies of offshore wind turbine [J]. Automation of Electric Power Systems, 2012, 36(21): 121-129. [15] 段斌,林媛源,黄凌翔,等. 风电场监控通信安全解决方案 [J]. 电力系统自动化,2009,33(12): 97-102. DUAN B, LIN Y Y, HUANG L X, et al. A security solution for monitoring and control communication in wind farms [J]. Automation of Electric Power Systems, 2009, 33 (12): 97-102.