Processing math: 0%
高级检索

双体风电运维船阻力CFD计算及降阻设计研究

蔡翰翔, 陈超核

蔡翰翔,陈超核.双体风电运维船阻力CFD计算及降阻设计研究[J].南方能源建设,2022,09(01):20-28.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.003
引用本文: 蔡翰翔,陈超核.双体风电运维船阻力CFD计算及降阻设计研究[J].南方能源建设,2022,09(01):20-28.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.003
CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.003
Citation: CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28.. DOI: 10.16516/j.gedi.issn2095-8676.2022.01.003
蔡翰翔,陈超核.双体风电运维船阻力CFD计算及降阻设计研究[J].南方能源建设,2022,09(01):20-28.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.01.003
引用本文: 蔡翰翔,陈超核.双体风电运维船阻力CFD计算及降阻设计研究[J].南方能源建设,2022,09(01):20-28.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.01.003
CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.01.003
Citation: CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28.. CSTR: 32391.14.j.gedi.issn2095-8676.2022.01.003

双体风电运维船阻力CFD计算及降阻设计研究

基金项目: 

2021年广东省促进经济高质量发展专项(海洋经济发展)重点项目“深远海高性能海上风电运维船与核心装备研发与应用示范” GDNRC[2021]39

详细信息
    作者简介:

    蔡翰翔1997-,男,江苏盐城人,船舶与海洋工程硕士研究生,主要从事海上风电运维船研究(e-mail)caihanxiang2019@163.com

    陈超核(通信作者)1962-,男,湖南蓝山人,教授,博士生导师,主要从事船舶与海洋工程装备研发(e-mail)chenchaohe@scut.edu.cn

  • 中图分类号: TK89

Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service VesselEn

  • 摘要:
      目的  船舶阻力直接影响着船舶的快速性能,对于一艘海上风电运维船,快速性能是此船舶的重要性能指标之一。因此,需要计算船舶的阻力并研究有效的阻力优化方法。
      方法  基于CFD方法,建立了数值模型,对某19.1 m长的双体海上风电运维船的阻力性能进行了研究,计算并分析10 kn、13 kn、16 kn和20 kn这四个不同航速下船舶的阻力,并于此船的船尾加装压浪板作为优化方法。共设计三种不同安装角的压浪板方案。对优化前后的船舶均进行了数值模拟,对得出的计算结果进行了对比分析。
      结果  研究表明,在此船船尾加装适当安装角的压浪板可以有效地改善船舶在航行时的阻力性能,降阻效果比较理想。可以改变船舶的航行姿态,减小船舶航行时的升沉量和纵倾角。
      结论  可以为此船舶的阻力性能计算以及优化方法设计提供参考。
    Abstract:
      Introduction  The ship resistance directly affects the fast performance of the ship, for an offshore wind farm service vessel, the fast performance is one of the important performance indexes. Therefore, it is necessary to calculate the ship resistance and study the effective resistance optimization method.
      Method  Based on the CFD method, a numerical model was established to study the resistance performance of a 19.1 m-long catamaran offshore wind farm service vessel, the resistance of the ship at four different speeds of 10 kn, 13 kn, 16 kn and 20 kn were calculated and analyzed, and a stern flap was installed at the stern of the ship as the optimization method. Three stern flap schemes with different installation angles were designed. The ships before and after optimization were numerically simulated, and the calculation results were compared and analyzed.
      Result  The research shows that the installation of stern flap with appropriate installation angle at the stern of the ship can effectively improve the resistance performance of the ship during navigation. The resistance reduction effect is ideal. The optimization method can change the navigation attitude of the ship and reduce the heave and trim angle of the ship during navigation.
      Conclusion  The research results can provide reference for the calculation of ship resistance performance and the design of optimization method.
  • 图  1   船体模型视图

    Figure  1.   Hull model view

    图  2   计算域

    Figure  2.   Computational domain

    图  3   网格划分

    Figure  3.   Mesh generation

    图  4   网格密度敏感性

    Figure  4.   Grid density sensitivity

    图  5   时间步长敏感性

    Figure  5.   Time step sensitivity

    图  6   双体船各航速总阻力曲线

    Figure  6.   Total resistance curve of catamaran at each speed

    图  7   阻力结果曲线

    Figure  7.   Resistance result curve

    图  8   压浪板示意图

    Figure  8.   Schematic diagram of stern flap

    图  9   各方案总阻力曲线

    Figure  9.   Total resistance curve of each scheme

    图  10   各方案升沉量曲线

    Figure  10.   Heave curve of each scheme

    图  11   各方案纵倾角曲线

    Figure  11.   Trim angle curve of each scheme

    图  12   裸船体16 kn波形图

    Figure  12.   16 kn waveform of bare hull

    图  13   0°压浪板16 kn波形图

    Figure  13.   16 kn waveform of 0° stern flap

    图  14   5°压浪板16 kn波形图

    Figure  14.   16 kn waveform of 5° stern flap

    图  15   7°压浪板16 kn波形图

    Figure  15.   16 kn waveform of 7° stern flap

    图  16   裸船体16 kn波形斜视图

    Figure  16.   Oblique view of bare hull 16 kn waveform

    图  17   0°压浪板16 kn波形斜视图

    Figure  17.   Oblique view of 16 kn waveform of 0° stern flap

    图  18   5°压浪板16 kn波形斜视图

    Figure  18.   Oblique view of 16 kn waveform of 5° stern flap

    图  19   7°压浪板16 kn波形斜视图

    Figure  19.   Oblique view of 16 kn waveform of 7° stern flap

    表  1   船舶主要参数

    Table  1   Main parameters of the vessel

    主尺度实船
    水线长Lwl/m19.1
    型宽B/m6.0
    水线宽Bwl/m3.6
    片体宽b/m1.8
    型深D/m3.2
    设计吃水d/m1.6
    结构吃水ds/m1.6
    方形系数Cb0.638
    最大航速v/kn20.0
    排水量 /t71.7

    注:本文中1 kn = 0.514 44 m/s

    下载: 导出CSV

    表  2   网格密度敏感性方案

    Table  2   Grid density sensitivity scheme

    时间步长/s航速/kn网格基准尺寸/m生成网格数量/个总阻力/kN
    0.015160.7073 166 77876.290
    0.015161.01 423 25976.485
    0.015161.414700 83678.493
    0.015162.0363 19079.180
    0.015162.828186 93681.961
    下载: 导出CSV

    表  3   时间步长敏感性方案

    Table  3   Time step sensitivity scheme

    时间步长/s航速/kn网格基准尺寸/m生成网格数量/个总阻力/kN
    0.0106161.01 423 25977.399
    0.0150161.01 423 25976.485
    0.0212161.01 423 25976.396
    0.0300161.01 423 25981.587
    0.0424161.01 423 25985.044
    下载: 导出CSV

    表  4   阻力计算结果

    Table  4   Resistance calculation results

    Fr航速/kn总阻力/kN摩擦阻力/kN压阻力/kN
    0.3761032.5174.27128.246
    0.4891358.8277.20051.627
    0.6021676.48510.70065.785
    0.7522081.63519.11262.523
    下载: 导出CSV

    表  5   压浪板参数

    Table  5   stern flap parameters

    压浪板方案长度/mm安装角/(°)
    方案一3820
    方案二3825
    方案三3827
    下载: 导出CSV

    表  6   各方案总阻力

    Table  6   Total resistance of each scheme

    Fr航速/kn模型总阻力/kN减阻效果/%
    0.37610裸船体32.517
    0.376100°压浪板31.9831.64
    0.376105°压浪板32.824-0.94
    0.376107°压浪板33.252-2.26
    0.48913裸船体58.827
    0.489130°压浪板56.0184.78
    0.489135°压浪板56.0264.76
    0.489137°压浪板56.4783.99
    0.60216裸船体76.485
    0.602160°压浪板73.2544.22
    0.602165°压浪板71.3406.73
    0.602167°压浪板70.9197.28
    0.75220裸船体81.635
    0.752200°压浪板78.2224.18
    0.752205°压浪板75.6657.31
    0.752207°压浪板74.9548.18
    下载: 导出CSV

    表  7   各方案升沉量

    Table  7   Heave of each scheme

    Fr航速/kn模型升沉量/mm升沉量降低/%
    0.37610裸船体-111.23
    0.376100°压浪板-103.736.74
    0.376105°压浪板-95.1214.48
    0.376107°压浪板-91.2717.94
    0.48913裸船体-217.88
    0.489130°压浪板-208.764.19
    0.489135°压浪板-194.8810.56
    0.489137°压浪板-187.6813.86
    0.60216裸船体-174.54
    0.602160°压浪板-151.5213.19
    0.602165°压浪板-136.1122.02
    0.602167°压浪板-131.1024.89
    0.75220裸船体-61.78
    0.752200°压浪板-46.0325.50
    0.752205°压浪板-33.5845.64
    0.752207°压浪板-24.7759.91
    下载: 导出CSV

    表  8   各方案纵倾角

    Table  8   Trim angle of each scheme

    Fr航速/kn模型纵倾角/(°)纵倾角降低/%
    0.37610裸船体-0.38
    0.376100°压浪板-0.2437.79
    0.376105°压浪板-0.0685.45
    0.376107°压浪板0.01102.64
    0.48913裸船体-2.38
    0.489130°压浪板-2.1410.13
    0.489135°压浪板-1.8621.76
    0.489137°压浪板-1.7725.62
    0.60216裸船体-3.24
    0.602160°压浪板-2.929.80
    0.602165°压浪板-2.5421.66
    0.602167°压浪板-2.4025.92
    0.75220裸船体-2.95
    0.752200°压浪板-2.5015.24
    0.752205°压浪板-1.9334.64
    0.752207°压浪板-1.7540.66
    下载: 导出CSV
  • [1] 李红涛, 王宾, 唐广银. 海上风电场设施技术规范综述 [J]. 南方能源建设, 2019, 6(2): 1-6. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.001.

    LIH T, WANGB, TANGG Y. Summary of technical specifications for offshore wind farm facilities [J]. Southern Energy Construction, 2019, 6(2): 1-6. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.001.

    [2] 周成, 王志永, 程海刚. 29.6 m高速双体风电运维船有限元强度分析 [J]. 江苏船舶, 2020, 37(3): 8-10+5. DOI: 10.19646/j.cnki.32-1230.2020.03.003.

    ZHOUC, WANGZ Y, CHENGH G. Finite element strength analysis of a 29.6m high-speed catamaran wind power operation and maintenance ship [J]. Jiangsu Ship, 2020, 37(3): 8-10+5. DOI: 10.19646/j.cnki.32-1230.2020.03.003.

    [3] 高汪涛. 某深拖母船阻力性能研究与船型优化 [D]. 上海: 上海交通大学, 2019. DOI: 10. 27307/d.cnki.gsjtu.2019.000587.

    GAOW T. Research on resistance performance of a deep-towing mothership and its hull form optimization [D]. Shanghai: Shanghai Jiao Tong University, 2019. DOI: 10.27307/d.cnki.gsjtu.2019.000587.

    [4] 李纳, 刘和炜, 张彬. 基于STAR-CCM+的鱿鱼钓船波浪增阻数值计算与球鼻艏选型分析 [J]. 中国渔业质量与标准, 2021, 11(3): 25-31. DOI: 10.3969/j.issn.2095-1833.2021.03.004.

    LIN, LIUH W, ZHANGB. Numerical calculation of wave-added resistance and selection analysis of bulbous bow for squid jigging boat based on STAR-CCM+ [J]. Chinese Fishery Quality and Standards, 2021, 11(3): 25-31. DOI: 10.3969/j.issn.2095-1833.2021.03.004.

    [5] 陈涛, 崔健, 陆泽华, 等.艉压浪板与艉垂直板对浅吃水高速船快速性的影响比较[J].上海船舶运输科学研究所学报, 2019, 42(3): 1-5. DOI: 10.3969/j.issn.1674-5949.2019.03.001.

    CHENT, CUIJ, LUZ H, et al. Comparison of the effects of stern flap and stern vertical plate on the speed and resistance of high speed ships with shallow draft[J]. Journal of Shanghai Scientific Research Institute of Shipping, 2019, 42(3): 1-5. DOI: 10.3969/j.issn.1674-5949.2019.03.001.

    [6] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响 [J].船舶工程, 2019, 41(7): 37-43. DOI: 10.13788/j.cnki.cbgc.2019.07.07.

    LID Q, LIP, ZHANGY L, et al. Influence of segmented stern flap on resistance performance of high speed craft [J]. Ship Engineering, 2019, 41(7): 37-43. DOI: 10.13788/j.cnki.cbgc.2019.07.07.

    [7] 于兴鹏. 海上双体风电运维船总体设计的关键技术研究 [D]. 镇江: 江苏科技大学, 2020. DOI: 10.27171/d.cnki.ghdcc.2020.000067.

    YUX P. Research on the key technologies of the overall design of offshore catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI: 10.27171/d.cnki.ghdcc.2020.000067.

    [8] 许媛媛, 吕彩霞, 李建, 等. 基于CFD的中低速Wigley船模黏性阻力 [J]. 船舶工程, 2019, 41(9): 36-40+99. DOI: 10.13788/j.cnki.cbgc.2019.09.08.

    XUY Y, LÜC X, LIJ, et al. Viscous resistance of medium and low speed wigley ship model based on CFD [J]. Ship Engineering, 2019, 41(9): 36-40+99. DOI: 10.13788/j.cnki.cbgc.2019.09.08.

    [9] 张明霞, 李岗, 王志豪, 等. 基于STAR-CCM+的V型无压载水船阻力性能研究 [J]. 船舶工程, 2020, 42(3): 47-55+134. DOI: 10.13788/j.cnki.cbgc.2020.03.09.

    ZHANGM X, LIG, WANGZ H, et al. Research on resistance performance of V-shape non-ballast water ship based on STAR-CCM+ [J]. Ship Engineering, 2020, 42(3): 47-55+134. DOI: 10.13788/j.cnki.cbgc.2020.03.09.

    [10] 刘飞. 基于CFD方法的破损船舶阻力预报研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.

    LIUF. Study on resistance prediction of damaged ship based on CFD method [D]. Harbin: Harbin Engineering University, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.

    [11] 高天敏. 双体风电运维船尾下沉与阻力及耐波性综合研究[D]. 镇江: 江苏科技大学, 2020. DOI: 10.27171/d.cnki.ghdcc.2020.000390.

    GAOT M. The comprehensive research on sinking, resistance and wave resistance of the catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI: 10.27171/d.cnki.ghdcc.2020.000390.

    [12] 方静, 黄晶, 冯佰威, 等. 基于CFD的超小型双体无人船总体设计 [J]. 船舶工程, 2018, 40(5): 1-3+56. DOI: 10.13788/j.cnki.cbgc.2018.05.001.

    FANGJ, HUANGJ, FENGB W, et al. General design of unmanned ultra-small catamaran ship based on CFD [J]. Ship Engineering, 2018, 40(5): 1-3+56. DOI: 10.13788/j.cnki.cbgc.2018.05.001.

    [13] 陈悦, 胡冬芳, 杨铃玉, 等. 三体风电运维船主侧体特征参数及阻力性能研究 [J]. 中国造船, 2016, 57(4):80-86. DOI: 10.3969/j.issn.1000-4882.2016.04.009.

    CHENY, HUD F, YANGL Y, et al. Research on parameters of main and side hull and resistance performance of a transportation and maintenance trimaran [J]. Shipbuilding of China, 2016, 57(4): 80-86. DOI: 10.3969/j.issn.1000-4882.2016.04.009.

    [14] 杨培青, 管义锋. 基于CFD的三维船体摩擦阻力预报与验证 [J]. 船舶工程, 2007, 29(3): 61-64. DOI: 10.3969/j.issn.1000-6982.2007.03.012.

    YANGP Q, GUANY F. Prediction and validation of frictional resistance of 3-D hull based on CFD [J]. Ship Engineering, 2007, 29(3): 61-64. DOI: 10.3969/j.issn.1000-6982.2007.03.012.

    [15] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响 [J]. 中国舰船研究, 2017, 12(2): 22-29. DOI: 10.3969/j.issn.1673-3185.2017.02.003.

    QIANH, SONGK W, GUOC Y, et al. Influence of waterjet duct on ship's resistance performance [J]. Chinese Journal of Ship Research, 2017, 12(2): 22- 29. DOI: 10.3969/j.issn.1673-3185.2017.02.003.

    [16] 邵世明, 王云才. 尾压浪板对高速艇阻力性能的影响 [J]. 中国造船, 1981(1): 31-41.

    SHAOS M, WANGY C. The effects of stern trimming flap on resistance of high speed craft [J]. Shipbuilding of China, 1981(1): 31-41.

    [17] 孙聪, 宋科委, 尹晓辉, 等. 两种尾部附体在过渡型船舶上的对比研究 [J]. 中国造船, 2019, 60(1): 30-39. DOI: 10.3969/j.issn.1000-4882.2019.01.004.

    SUNC, SONGK W, YINX H, et al. Comparative study of two types of stern appendages on semi-displacement ships [J]. Shipbuilding of China, 2019, 60(1): 30-39. DOI: 10.3969/j.issn.1000-4882.2019.01.004.

图(19)  /  表(8)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 修回日期:  2021-03-16
  • 刊出日期:  2022-03-24

目录

    Chaohe CHEN

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回