• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 9 Issue 1
Mar.  2022
Turn off MathJax
Article Contents

CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28. doi:  10.16516/j.gedi.issn2095-8676.2022.01.003
Citation: CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28. doi:  10.16516/j.gedi.issn2095-8676.2022.01.003

Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel

doi: 10.16516/j.gedi.issn2095-8676.2022.01.003
  • Received Date: 2021-02-06
  • Rev Recd Date: 2021-03-17
  • Publish Date: 2022-03-25
  •   Introduction  The ship resistance directly affects the fast performance of the ship, for an offshore wind farm service vessel, the fast performance is one of the important performance indexes. Therefore, it is necessary to calculate the ship resistance and study the effective resistance optimization method.  Method  Based on the CFD method, a numerical model was established to study the resistance performance of a 19.1 m-long catamaran offshore wind farm service vessel, the resistance of the ship at four different speeds of 10 kn, 13 kn, 16 kn and 20 kn were calculated and analyzed, and a stern flap was installed at the stern of the ship as the optimization method. Three stern flap schemes with different installation angles were designed. The ships before and after optimization were numerically simulated, and the calculation results were compared and analyzed.  Result  The research shows that the installation of stern flap with appropriate installation angle at the stern of the ship can effectively improve the resistance performance of the ship during navigation. The resistance reduction effect is ideal. The optimization method can change the navigation attitude of the ship and reduce the heave and trim angle of the ship during navigation.  Conclusion  The research results can provide reference for the calculation of ship resistance performance and the design of optimization method.
  • [1] 李红涛, 王宾, 唐广银. 海上风电场设施技术规范综述 [J]. 南方能源建设, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.

    LIH T, WANGB, TANGG Y. Summary of technical specifications for offshore wind farm facilities [J]. Southern Energy Construction, 2019, 6(2): 1-6. DOI:  10.16516/j.gedi.issn2095-8676.2019.02.001.
    [2] 周成, 王志永, 程海刚. 29.6 m高速双体风电运维船有限元强度分析 [J]. 江苏船舶, 2020, 37(3): 8-10+5. DOI:  10.19646/j.cnki.32-1230.2020.03.003.

    ZHOUC, WANGZ Y, CHENGH G. Finite element strength analysis of a 29.6m high-speed catamaran wind power operation and maintenance ship [J]. Jiangsu Ship, 2020, 37(3): 8-10+5. DOI:  10.19646/j.cnki.32-1230.2020.03.003.
    [3] 高汪涛. 某深拖母船阻力性能研究与船型优化 [D]. 上海: 上海交通大学, 2019. DOI: 10. 27307/d.cnki.gsjtu.2019.000587.

    GAOW T. Research on resistance performance of a deep-towing mothership and its hull form optimization [D]. Shanghai: Shanghai Jiao Tong University, 2019. DOI:  10.27307/d.cnki.gsjtu.2019.000587.
    [4] 李纳, 刘和炜, 张彬. 基于STAR-CCM+的鱿鱼钓船波浪增阻数值计算与球鼻艏选型分析 [J]. 中国渔业质量与标准, 2021, 11(3): 25-31. DOI:  10.3969/j.issn.2095-1833.2021.03.004.

    LIN, LIUH W, ZHANGB. Numerical calculation of wave-added resistance and selection analysis of bulbous bow for squid jigging boat based on STAR-CCM+ [J]. Chinese Fishery Quality and Standards, 2021, 11(3): 25-31. DOI:  10.3969/j.issn.2095-1833.2021.03.004.
    [5] 陈涛, 崔健, 陆泽华, 等.艉压浪板与艉垂直板对浅吃水高速船快速性的影响比较[J].上海船舶运输科学研究所学报, 2019, 42(3): 1-5. DOI:  10.3969/j.issn.1674-5949.2019.03.001.

    CHENT, CUIJ, LUZ H, et al. Comparison of the effects of stern flap and stern vertical plate on the speed and resistance of high speed ships with shallow draft[J]. Journal of Shanghai Scientific Research Institute of Shipping, 2019, 42(3): 1-5. DOI:  10.3969/j.issn.1674-5949.2019.03.001.
    [6] 李冬琴, 李鹏, 章易立, 等. 分段式尾压浪板对高速船阻力性能的影响 [J].船舶工程, 2019, 41(7): 37-43. DOI:  10.13788/j.cnki.cbgc.2019.07.07.

    LID Q, LIP, ZHANGY L, et al. Influence of segmented stern flap on resistance performance of high speed craft [J]. Ship Engineering, 2019, 41(7): 37-43. DOI:  10.13788/j.cnki.cbgc.2019.07.07.
    [7] 于兴鹏. 海上双体风电运维船总体设计的关键技术研究 [D]. 镇江: 江苏科技大学, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000067.

    YUX P. Research on the key technologies of the overall design of offshore catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000067.
    [8] 许媛媛, 吕彩霞, 李建, 等. 基于CFD的中低速Wigley船模黏性阻力 [J]. 船舶工程, 2019, 41(9): 36-40+99. DOI:  10.13788/j.cnki.cbgc.2019.09.08.

    XUY Y, LÜC X, LIJ, et al. Viscous resistance of medium and low speed wigley ship model based on CFD [J]. Ship Engineering, 2019, 41(9): 36-40+99. DOI:  10.13788/j.cnki.cbgc.2019.09.08.
    [9] 张明霞, 李岗, 王志豪, 等. 基于STAR-CCM+的V型无压载水船阻力性能研究 [J]. 船舶工程, 2020, 42(3): 47-55+134. DOI:  10.13788/j.cnki.cbgc.2020.03.09.

    ZHANGM X, LIG, WANGZ H, et al. Research on resistance performance of V-shape non-ballast water ship based on STAR-CCM+ [J]. Ship Engineering, 2020, 42(3): 47-55+134. DOI:  10.13788/j.cnki.cbgc.2020.03.09.
    [10] 刘飞. 基于CFD方法的破损船舶阻力预报研究 [D]. 哈尔滨: 哈尔滨工程大学, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.

    LIUF. Study on resistance prediction of damaged ship based on CFD method [D]. Harbin: Harbin Engineering University, 2021. DOI: 10. 27060/d.cnki.ghbcu.2021.000911.
    [11] 高天敏. 双体风电运维船尾下沉与阻力及耐波性综合研究[D]. 镇江: 江苏科技大学, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000390.

    GAOT M. The comprehensive research on sinking, resistance and wave resistance of the catamaran wind power operation and maintenance ship [D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. DOI:  10.27171/d.cnki.ghdcc.2020.000390.
    [12] 方静, 黄晶, 冯佰威, 等. 基于CFD的超小型双体无人船总体设计 [J]. 船舶工程, 2018, 40(5): 1-3+56. DOI:  10.13788/j.cnki.cbgc.2018.05.001.

    FANGJ, HUANGJ, FENGB W, et al. General design of unmanned ultra-small catamaran ship based on CFD [J]. Ship Engineering, 2018, 40(5): 1-3+56. DOI:  10.13788/j.cnki.cbgc.2018.05.001.
    [13] 陈悦, 胡冬芳, 杨铃玉, 等. 三体风电运维船主侧体特征参数及阻力性能研究 [J]. 中国造船, 2016, 57(4):80-86. DOI:  10.3969/j.issn.1000-4882.2016.04.009.

    CHENY, HUD F, YANGL Y, et al. Research on parameters of main and side hull and resistance performance of a transportation and maintenance trimaran [J]. Shipbuilding of China, 2016, 57(4): 80-86. DOI:  10.3969/j.issn.1000-4882.2016.04.009.
    [14] 杨培青, 管义锋. 基于CFD的三维船体摩擦阻力预报与验证 [J]. 船舶工程, 2007, 29(3): 61-64. DOI:  10.3969/j.issn.1000-6982.2007.03.012.

    YANGP Q, GUANY F. Prediction and validation of frictional resistance of 3-D hull based on CFD [J]. Ship Engineering, 2007, 29(3): 61-64. DOI:  10.3969/j.issn.1000-6982.2007.03.012.
    [15] 钱浩, 宋科委, 郭春雨, 等. 喷水推进器流道对船舶阻力性能的影响 [J]. 中国舰船研究, 2017, 12(2): 22-29. DOI:  10.3969/j.issn.1673-3185.2017.02.003.

    QIANH, SONGK W, GUOC Y, et al. Influence of waterjet duct on ship's resistance performance [J]. Chinese Journal of Ship Research, 2017, 12(2): 22- 29. DOI:  10.3969/j.issn.1673-3185.2017.02.003.
    [16] 邵世明, 王云才. 尾压浪板对高速艇阻力性能的影响 [J]. 中国造船, 1981(1): 31-41.

    SHAOS M, WANGY C. The effects of stern trimming flap on resistance of high speed craft [J]. Shipbuilding of China, 1981(1): 31-41.
    [17] 孙聪, 宋科委, 尹晓辉, 等. 两种尾部附体在过渡型船舶上的对比研究 [J]. 中国造船, 2019, 60(1): 30-39. DOI:  10.3969/j.issn.1000-4882.2019.01.004.

    SUNC, SONGK W, YINX H, et al. Comparative study of two types of stern appendages on semi-displacement ships [J]. Shipbuilding of China, 2019, 60(1): 30-39. DOI:  10.3969/j.issn.1000-4882.2019.01.004.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(19)  / Tables(8)

Article Metrics

Article views(285) PDF downloads(63) Cited by()

Related

Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel

doi: 10.16516/j.gedi.issn2095-8676.2022.01.003

Abstract:   Introduction  The ship resistance directly affects the fast performance of the ship, for an offshore wind farm service vessel, the fast performance is one of the important performance indexes. Therefore, it is necessary to calculate the ship resistance and study the effective resistance optimization method.  Method  Based on the CFD method, a numerical model was established to study the resistance performance of a 19.1 m-long catamaran offshore wind farm service vessel, the resistance of the ship at four different speeds of 10 kn, 13 kn, 16 kn and 20 kn were calculated and analyzed, and a stern flap was installed at the stern of the ship as the optimization method. Three stern flap schemes with different installation angles were designed. The ships before and after optimization were numerically simulated, and the calculation results were compared and analyzed.  Result  The research shows that the installation of stern flap with appropriate installation angle at the stern of the ship can effectively improve the resistance performance of the ship during navigation. The resistance reduction effect is ideal. The optimization method can change the navigation attitude of the ship and reduce the heave and trim angle of the ship during navigation.  Conclusion  The research results can provide reference for the calculation of ship resistance performance and the design of optimization method.

CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28. doi:  10.16516/j.gedi.issn2095-8676.2022.01.003
Citation: CAI Hanxiang,CHEN Chaohe.Research on CFD Calculation and Resistance Reduction Design of Catamaran Wind Farm Service Vessel[J].Southern Energy Construction,2022,09(01):20-28. doi:  10.16516/j.gedi.issn2095-8676.2022.01.003
  • 近些年来,我国海上风电装机容量呈增长趋势1,市场对于用于海上风电场运行维护的专业风电运维船的需求越来越大。目前,双体船船型比较适用于风电运维船,双体船有着甲板面积大、稳性好等优点2。而快速性能良好的风电运维船有利于海上风电场运维作业的完成。所以,针对此类船舶的阻力性能和优化方法的研究有一定的必要性。

    船舶降阻的方法有很多,比如优化船型;设计球鼻艏;加装压浪板等等。高汪涛3研究了船型优化方法对一艘深拖母船的阻力性能的影响;李纳4等分析了某船无球鼻艏以及加装两种不同球鼻艏后的阻力性能;陈涛5等研究了艉压浪板和艉垂直板对某高速船的快速性的影响;李冬琴6等研究了分段式压浪板对某高速船的阻力性能的影响。

    CFD技术在船舶的水动力性能分析领域中的应用较多,于兴鹏7使用STAR-CCM+软件对一艘双体风电运维船的阻力进行了研究;许媛媛等8采用CFD方法对中低速Wigley船模的阻力进行计算分析;张明霞等9使用STAR-CCM+软件针对V型无压载水船舶的阻力进行了分析,通过优化球鼻艏进行阻力改善;刘飞10利用CFD方法对某破损船舶的阻力进行了研究;高天敏11基于CFD技术,利用STAR-CCM+软件对双体风电运维船的尾部下沉及静水阻力、纵倾等进行了分析;方静等12对无人双体船进行CFD仿真计算,研究船舶的阻力性能;陈悦等13利用CFD方法研究了某三体风电运维船主侧体的排水体积之比以及主侧体相对位置对船舶阻力性能的影响。

    CFD可以计算多种船舶阻力。杨培青等14利用CFD技术,对某三维船体的摩擦阻力进行了预报;钱浩等15利用CFD软件对某三体船的剪切阻力(即摩擦阻力)和压差阻力进行了分析,研究安装喷水推进器流道对于船舶阻力性能的影响。

    CFD技术在船舶水动力领域的研究已较为成熟,利用CFD方法针对适用于特殊需求的双体船如海上风电运维船的阻力性能及优化方法的研究有一定的价值。本文以某海上风电运维船为研究对象,分析此船的阻力及航态,并且研究加装压浪板这一优化方法,为此海上风电运维船的优化设计提供一定的参考。

  • 本文基于CFD技术对船舶的阻力以及航态进行了研究,对于不可压缩的三维流体,需要满足连续方程及动量方程:

    uixi=0 ((1))
    ρuit+ρuiujxj=-Pxi+xjρμuixj+ujxi+-ρui'uj'¯xj ((2))

    式中:

    ρ——流体密度(kg/m3);

    uiuj——平均速度分量(m/s);

    xixj——坐标系分量(m);

    μ——动力粘性系数(Pa·s);

    P——平均压力(Pa);

    -ρui'uj'¯——雷诺应力项(Pa)。

    选用Realizable k-ε湍流模型,采用VOF方法对自由液面进行捕捉。

  • 本文所研究的船舶为一艘双体海上风电运维船,根据船舶型线图,使用SolidWorks和Rhino进行建模,模型和实船的比例为1∶1。

    主要参数如表1所示,船模如图1所示。

    主尺度实船
    水线长Lwl/m19.1
    型宽B/m6.0
    水线宽Bwl/m3.6
    片体宽b/m1.8
    型深D/m3.2
    设计吃水d/m1.6
    结构吃水ds/m1.6
    方形系数Cb0.638
    最大航速v/kn20.0
    排水量 /t71.7

    Table 1.  Main parameters of the vessel

    Figure 1.  Hull model view

    模型建好后,将船模导入到STAR-CCM+中。

  • 由于船舶左右对称,只对船舶的左侧进行数值模拟计算。

    计算流体域的尺寸为:船前方向取2.5倍船长,船后方向取4.5倍船长;船宽方向取2倍船长;船底下方取2倍船长,船体上方取1倍船长。

    计算域包括了背景域和重叠域两个部分。建立的数值试验池的顶部、底部以及入口使用速度入口,两侧侧面使用对称面,出口使用压力出口。如图2所示。

    Figure 2.  Computational domain

    在STAR-CCM+软件内对计算域以及模型进行网格划分,采用了重叠网格法。为了保证计算结果的精确性,对船体周围特别是船首船尾处进行了局部加密,并且对自由液面处也进行了局部加密。为了避免反射,使用STAR-CCM+的VOF 波阻尼功能进行消波。运动模拟使用DFBI(Dynamic Fluid Body Interaction)进行求解。模拟时长取100 s。网格划分如图3所示。

    Figure 3.  Mesh generation

  • 为了保证网格密度以及时间步长取值的合理性,以裸船模型为对象进行对比分析,以2 为比率将网格基准尺寸及时间步长进行改变,对生成的所有方案进行计算,航速均取16 kn。对比分析得到的总阻力大小以验证敏感性。如表2表3所示。

    时间步长/s航速/kn网格基准尺寸/m生成网格数量/个总阻力/kN
    0.015160.7073 166 77876.290
    0.015161.01 423 25976.485
    0.015161.414700 83678.493
    0.015162.0363 19079.180
    0.015162.828186 93681.961

    Table 2.  Grid density sensitivity scheme

    时间步长/s航速/kn网格基准尺寸/m生成网格数量/个总阻力/kN
    0.0106161.01 423 25977.399
    0.0150161.01 423 25976.485
    0.0212161.01 423 25976.396
    0.0300161.01 423 25981.587
    0.0424161.01 423 25985.044

    Table 3.  Time step sensitivity scheme

    结果绘制成曲线图如图4图5所示。

    Figure 4.  Grid density sensitivity

    Figure 5.  Time step sensitivity

    可以看出,分别以网格密度和时间步长为变量得出的系列总阻力趋向于稳定,由此可以保证数值模拟的网格密度及时间步长对计算结果没有大的影响。考虑到计算结果精确度以及计算资源耗费,最终选取网格尺寸为1.0 m,网格总数约为1.4×106个,时间步长为0.015 s的方案。

  • 取10 kn,13 kn,16 kn,20 kn四个航速,基于CFD技术得出了此船裸船体的阻力计算曲线,计算时长为100 s,如图6所示,阻力结果如图7表4所示。由于数值模拟只针对半船进行了计算,所以计算得到的阻力的两倍才是全船的阻力,总阻力由摩擦阻力和压阻力组成。

    Figure 6.  Total resistance curve of catamaran at each speed

    Figure 7.  Resistance result curve

    Fr航速/kn总阻力/kN摩擦阻力/kN压阻力/kN
    0.3761032.5174.27128.246
    0.4891358.8277.20051.627
    0.6021676.48510.70065.785
    0.7522081.63519.11262.523

    Table 4.  Resistance calculation results

    可以得出结果:对于本船,总阻力随着航速的增加而增大,在总阻力中,压阻力的占比大于摩擦阻力,减小压阻力是优化此船舶总阻力的有效手段之一。

  • 对船舶阻力的优化有很多种,如减小船体表面粗糙度,优化船型,加装压浪板等。

    由于加装压浪板的方法对于本船来说相对较为简易,所以本文将加装压浪板作为优化方法,尾压浪板指位于船体艉封板处沿船体底板向后延伸的一块短板,尾压浪板通常有一定的安装角度θ,指的是压浪板与水平面的夹角,如图8所示,压浪板的长度可取船长的1%-2%16,综合考虑,本文设计的尾压浪板的长度取船长的2%,安装角取0°,5°,7°,厚度均取30 mm。最终得到三种压浪板的方案,压浪板的参数如表5所示。

    Figure 8.  Schematic diagram of stern flap

    压浪板方案长度/mm安装角/(°)
    方案一3820
    方案二3825
    方案三3827

    Table 5.  stern flap parameters

  • 本文针对船舶裸船体及压浪板的三种安装方案,计算10 kn,13 kn,16 kn,20 kn四种航速下的船舶总阻力,如表6所示。

    Fr航速/kn模型总阻力/kN减阻效果/%
    0.37610裸船体32.517
    0.376100°压浪板31.9831.64
    0.376105°压浪板32.824-0.94
    0.376107°压浪板33.252-2.26
    0.48913裸船体58.827
    0.489130°压浪板56.0184.78
    0.489135°压浪板56.0264.76
    0.489137°压浪板56.4783.99
    0.60216裸船体76.485
    0.602160°压浪板73.2544.22
    0.602165°压浪板71.3406.73
    0.602167°压浪板70.9197.28
    0.75220裸船体81.635
    0.752200°压浪板78.2224.18
    0.752205°压浪板75.6657.31
    0.752207°压浪板74.9548.18

    Table 6.  Total resistance of each scheme

    可以绘制出各个方案的总阻力曲线,如图9所示。

    Figure 9.  Total resistance curve of each scheme

    由计算结果可以分析出:在实船航速大于等于13 kn时,在船尾加装压浪板的减阻效果十分明显,减阻效果均处于3.99%及以上,最大减阻效果达到了8.18%,在16 kn和20 kn航速时,安装角为5°、7°的压浪板的减阻效果优于0°压浪板;在13 kn航速时,各压浪板方案减阻效果接近;在实船航速为10 kn时,在船尾加装压浪板的减阻效果比较差,几乎失去了减阻效果。压浪板的减阻效果主要是因为安装了压浪板之后,通过增加船体的虚长度影响尾部的流场17,降低尾部相应波区的波高,减少船舶的兴波阻力,进而减少船舶总阻力,可见本文4.4节的波形图分析。

  • 本文还分析了在船尾加装压浪板对于船舶航态中的升沉的影响,如表7所示。

    Fr航速/kn模型升沉量/mm升沉量降低/%
    0.37610裸船体-111.23
    0.376100°压浪板-103.736.74
    0.376105°压浪板-95.1214.48
    0.376107°压浪板-91.2717.94
    0.48913裸船体-217.88
    0.489130°压浪板-208.764.19
    0.489135°压浪板-194.8810.56
    0.489137°压浪板-187.6813.86
    0.60216裸船体-174.54
    0.602160°压浪板-151.5213.19
    0.602165°压浪板-136.1122.02
    0.602167°压浪板-131.1024.89
    0.75220裸船体-61.78
    0.752200°压浪板-46.0325.50
    0.752205°压浪板-33.5845.64
    0.752207°压浪板-24.7759.91

    Table 7.  Heave of each scheme

    可以绘制出各个方案的升沉量曲线,如图10所示。

    Figure 10.  Heave curve of each scheme

    由计算结果可以分析出:加装压浪板对于船舶航态的升沉有着一定的影响,在16 kn以及20 kn的较高航速下,加装压浪板对升沉量的降低效果较大,均处于13.19%及以上,最大降低效果达到了59.91%;在其他航速下,加装安装角为0°时的压浪板对于升沉量的降低效果相对较小;各航速下加装安装角为5°的压浪板对于船舶升沉量的降低效果均大于安装角为0°的压浪板,安装角为7°的压浪板的降低效果大于安装角为5°的压浪板。

  • 本文还分析了在船尾加装压浪板对于船舶航态中的纵倾的影响,如表8所示。

    Fr航速/kn模型纵倾角/(°)纵倾角降低/%
    0.37610裸船体-0.38
    0.376100°压浪板-0.2437.79
    0.376105°压浪板-0.0685.45
    0.376107°压浪板0.01102.64
    0.48913裸船体-2.38
    0.489130°压浪板-2.1410.13
    0.489135°压浪板-1.8621.76
    0.489137°压浪板-1.7725.62
    0.60216裸船体-3.24
    0.602160°压浪板-2.929.80
    0.602165°压浪板-2.5421.66
    0.602167°压浪板-2.4025.92
    0.75220裸船体-2.95
    0.752200°压浪板-2.5015.24
    0.752205°压浪板-1.9334.64
    0.752207°压浪板-1.7540.66

    Table 8.  Trim angle of each scheme

    可以绘制出各个方案的纵倾角曲线,如图11所示。

    Figure 11.  Trim angle curve of each scheme

    由计算结果可以分析出:加装压浪板对于船舶航态的纵倾角有着一定的影响,在各个航速下,对于纵倾角的降低效果均处于9.80%及以上,最大降低效果达到了102.64%;加装安装角为5°的压浪板对于船舶纵倾角的降低效果大于安装角为0°的压浪板,安装角为7°的压浪板的降低效果大于安装角为5°的压浪板。需要注意,当加装安装角为7°的压浪板后,船舶在10 kn航速下航行时,可能会出现轻微的艏倾现象。

  • 加装压浪板可以改变航态主要是因为在船舶航行过程中,压浪板可以使船舶产生附加力矩,进而改变船舶的航态。

  • 将实船16 kn(Fr=0.602)时的裸船体以及安装角分别为0°、5°、7°的压浪板方案的波形图进行对比分析,波形图所处时刻均为结果稳定处的相同时刻,如图12图15所示。

    Figure 12.  16 kn waveform of bare hull

    Figure 13.  16 kn waveform of 0° stern flap

    Figure 14.  16 kn waveform of 5° stern flap

    Figure 15.  16 kn waveform of 7° stern flap

    波形斜视图如图16图19所示。

    Figure 16.  Oblique view of bare hull 16 kn waveform

    Figure 17.  Oblique view of 16 kn waveform of 0° stern flap

    Figure 18.  Oblique view of 16 kn waveform of 5° stern flap

    Figure 19.  Oblique view of 16 kn waveform of 7° stern flap

    由波形图可以看出,安装压浪板的船体,虚长度比裸船体稍长,而安装角为5°及7°的压浪板的虚长度更长。压浪板的安装会有效降低尾部相应波区的波高值,降低船舶兴波阻力,最终降低船舶的总阻力。

  • 文章基于CFD方法对本双体船的阻力进行了数值模拟计算,对四个航速下的总阻力进行分析,在总阻力中,压阻力的占比大于摩擦阻力。

    在船尾加装压浪板可以降低此船的阻力,并且改变船舶航行时的升沉量、纵倾角。阻力方面:随着航速增加,压浪板的减阻效果也随之增大,在较高航速时,减阻效果尤为明显。且在给定的安装角范围内,随着船体加装压浪板的安装角角度增加,减阻效果也随之增大;升沉量方面:在较高航速时,对升沉量的降低效果尤为明显。在给定的安装角范围内,随着压浪板的安装角角度增加,升沉量降低效果也随之增大;纵倾角方面:在各个航速下,对于船舶纵倾角都有一定的降低效果。在给定的安装角范围内,随着压浪板的安装角角度增加,纵倾角降低效果也随之增大。

    综上所述,在船尾加装合适的压浪板对双体船的阻力性能有一定的改善效果,同时也能改变船舶的航态,可以为本船的性能优化提供参考。

Reference (17)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return