Processing math: 100%
高级检索

1 000 kV格构式独立避雷线塔风致响应分析

林汪勇, 陈寅, 张华

林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.011
引用本文: 林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.011
LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.011
Citation: LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.011
林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.011
引用本文: 林汪勇, 陈寅, 张华. 1 000 kV格构式独立避雷线塔风致响应分析[J]. 南方能源建设, 2022, 9(S2): 68-73. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.011
LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.011
Citation: LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. CSTR: 32391.14.j.gedi.issn2095-8676.2022.S2.011

1 000 kV格构式独立避雷线塔风致响应分析

基金项目: 中国能建中南院科技项目“濒海地区1000kV变电站高耸结构风致响应研究”(40-1A-KY201619-T202)
详细信息
    作者简介:

    林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com

    通讯作者:

    林汪勇,1980-,男,湖北公安人,高级工程师,武汉大学结构工程专业硕士,主要从事变电土建结构设计工作(e-mail)linwangyong@csepdi.com

  • 中图分类号: TM7; TU311.3

Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection TowerEn

  • 摘要:
      目的  为对1 000 kV格构式独立避雷线塔风致响应进行研究,并提出其合理的风振系数取值。
      方法  文章以1 000 kV格构式独立避雷线塔为研究对象,借助有限元软件ANSYS,以《建筑结构荷载规范》所采用的Davenport脉动风速功率谱密度函数为基础,基于结构随机振动理论以及频域分析方法,分析了该类型避雷线塔的风致响应,并与《高耸结构设计标准》推荐的简化公式所得风振系数值进行对比。
      结果  分析结果表明:在B类地貌、基本风压不大于0.60 kN/m2时,该避雷线塔总体变形满足规范要求;《高耸结构设计标准》推荐的简化公式所得风振系数值以及《变电站建筑结构设计技术规程》建议值总体小于有限元分析所得值,结构设计时应特别注意。
      结论  根据本文对比分析结果,推荐1 000 kV格构式独立避雷线塔结构设计时,风振系数可统一取2.20。
    Abstract:
      Introduction  This paper is aimed to study the wind-induced response of 1000 kV lattice independent lightning protection tower and propose the reasonable value of wind-induced vibration coefficient.
      Method  The wind-induced response of 1000 kV lattice lightning protection tower was analyzed in this paper with the help of finite element software ANSYS based on the Davenport fluctuating wind speed power spectral density function adopted in the Load Code for Building Structures and the structural random vibration theory and frequency domain analysis method. The wind-induced vibration coefficient was compared with that calculated by the simplified formula recommended in the Standard for Design of High-Rising Structures.
      Result  The analysis results show that the overall deformation of the lightning protection tower meets the specification requirements for the class B landform when the basic wind pressure is not greater than 0.60 kN/m2; The wind vibration coefficient value obtained from the simplified formula recommended in the Standard for Design of High-Rising Structures and the recommended value in the Technical Code for the Design of Substation Buildings and Structures are generally smaller than the value obtained from the finite element analysis, so special attention should be paid to it during structural design.
      Conclusion  According to the comparative analysis results of this paper, it is recommended that the wind-induced vibration coefficient can be uniformly taken as 2.20 during the structural design of 1000 kV lattice independent lightning protection tower.
  • 图  1   1 000 kV格构式避雷针有限元模型

    Figure  1.   Finite element model of 1000 kV lattice lightning rod

    表  1   前三阶自振频率

    Table  1   First three order natural frequencies

    频率阶次避雷针频率/Hz振型
    11.2413一阶横向弯曲
    21.2413一阶纵向弯曲
    34.6223二阶横向弯曲
    44.6223二阶纵向弯曲
    510.1630三阶纵向弯曲
    610.1630三阶横向弯曲
    下载: 导出CSV

    表  2   避雷线塔相关结构参数

    Table  2   Structural parameters of lightning protection tower

    层数体型系数μsi迎风面面积/m2挡风系数R
    m11.601.840.79
    m21.624.190.49
    m31.764.710.42
    m41.866.670.37
    m51.907.920.35
    m61.999.180.30
    m71.9510.440.33
    m82.0012.580.30
    m92.0915.020.26
    m102.0216.650.29
    m112.0518.300.27
    m122.1319.940.24
    下载: 导出CSV

    表  3   X向位移响应和风振系数

    Table  3   X-direction displacement response and wind-induced vibration coefficient

    层数平均位移/m均方根位移/m合位移/m风振系数
    m11.33E-014.46E-022.44E-011.84
    m21.17E-013.91E-022.15E-011.83
    m31.01E-013.36E-021.85E-011.83
    m48.41E-022.81E-021.54E-011.84
    m56.73E-022.24E-021.23E-011.83
    m65.21E-021.73E-029.53E-021.83
    m73.88E-021.28E-027.08E-021.82
    m82.73E-028.98E-034.98E-021.82
    m91.66E-025.42E-033.01E-021.82
    m108.61E-032.78E-031.56E-021.81
    m113.24E-031.04E-035.83E-031.80
    m123.69E-041.13E-046.51E-041.76
    风振系数加权平均值1.82
    下载: 导出CSV

    表  4   Y向位移响应和风振系数

    Table  4   Y-direction displacement response and wind-induced vibration coefficient

    层数平均位移/m均方根位移/m合位移/m风振系数
    11.52E-017.16E-023.31E-012.18
    21.35E-016.28E-022.92E-012.16
    31.18E-015.39E-022.52E-012.15
    49.91E-024.51E-022.12E-012.14
    58.04E-023.59E-021.70E-012.12
    66.32E-022.77E-021.33E-012.10
    74.78E-022.05E-029.92E-022.07
    83.43E-021.44E-027.03E-022.05
    92.13E-028.70E-034.30E-022.02
    101.13E-024.47E-032.25E-021.99
    114.41E-031.67E-038.58E-031.94
    125.56E-041.81E-041.01E-031.82
    风振系数加权平均值2.06
    下载: 导出CSV

    表  5   X向风振系数比较

    Table  5   Comparison of X-direction wind-induced vibration coefficients

    层数有限元分析所得
    风振系数
    标准方法所得
    风振系数
    误差
    11.841.924.17%
    21.831.956.15%
    31.831.945.67%
    41.841.903.16%
    51.831.851.08%
    61.831.71−7.02%
    71.821.59−14.47%
    81.821.46−24.66%
    91.821.33−36.84%
    101.811.18−53.39%
    111.801.08−66.67%
    121.761.02−72.55%
    加权平均值1.821.55−17.42%
    下载: 导出CSV

    表  6   Y向风振系数比较

    Table  6   Comparison of Y-direction wind-induced vibration coefficients

    层数有限元分析所得
    风振系数
    标准方法所得
    风振系数
    误差
    12.181.92−13.54%
    22.161.95−10.77%
    32.151.94−10.82%
    42.141.90−12.63%
    52.121.85−14.59%
    62.101.71−22.81%
    72.071.59−30.19%
    82.051.46−40.41%
    92.021.33−51.88%
    101.991.18−68.64%
    111.941.08−79.63%
    121.821.02−78.43%
    加权平均值2.061.55−32.90%
    下载: 导出CSV
  • [1] 陈寅, 陈传新, 张华, 等. 换流站避雷线塔风振系数计算 [J]. 电网与清洁能源, 2011, 27(8): 50-52. DOI: 10.3969/j.issn.1674-3814.2011.08.010.

    CHEN Y, CHEN C X, ZHANG H, et al. Wind vibration coefficient calculation of lightning protection tower in converter station [J]. Advances of Power System and Hydroelectric Engineering, 2011, 27(8): 50-52. DOI: 10.3969/j.issn.1674-3814.2011.08.010.

    [2] 李正良, 罗熙越, 蔡青青. 考虑塔-线耦合作用的输电塔体系风振系数研究 [J]. 建筑钢结构进展, 2021, 23(3): 119-128. DOI: 10.13969/j.cnki.cn31-1893.2021.03.013.

    LI Z L, LUO X Y, CAI Q Q. A study on the wind vibration coefficient of transmission tower system considering tower-line coupling effect [J]. Progress in Steel Building Structures, 2021, 23(3): 119-128. DOI: 10.13969/j.cnki.cn31-1893.2021.03.013.

    [3] 原迁, 张德凯. 大跨越输电塔线体系风振响应及风振系数分析 [J]. 山西建筑, 2021, 47(6): 34-38. DOI: 10.3969/j.issn.1009-6825.2021.06.012.

    YUAN Q, ZHANG D K. Analysis of wind-induced response and vibration coefficient of long-span transmission line tower [J]. Shanxi Architecture, 2021, 47(6): 34-38. DOI: 10.3969/j.issn.1009-6825.2021.06.012.

    [4] 窦汉岭, 程长征. 转角输电塔线体系的风振响应分析 [J]. 合肥工业大学学报(自然科学版), 2020, 43(9): 1218-1222. DOI: 10.3969/j.issn.1003-5060.2020.09.013.

    DOU H L, CHENG C Z. Analysis on wind-induced response of corner transmission tower-line system [J]. Journal of Hefei University of Technology (Natural Science Edition), 2020, 43(9): 1218-1222. DOI: 10.3969/j.issn.1003-5060.2020.09.013.

    [5] 邓洪洲, 张建明, 帅群, 等. 输电钢管塔体型系数风洞试验研究 [J]. 电网技术, 2010, 34(9): 190-194. DOI: 10.13335/j.1000-3673.pst.2010.09.024.

    DENG H Z, ZHANG J M, SHUAI Q, et al. Wind-tunnel investigation on pressure coefficient of steel tubular transmission tower [J]. Power System Technology, 2010, 34(9): 190-194. DOI: 10.13335/j.1000-3673.pst.2010.09.024.

    [6] 邹良浩, 梁枢果, 邹垚, 等. 格构式塔架风载体型系数的风洞试验研究 [J]. 特种结构, 2008, 25(5): 41-43,68. DOI: 10.3969/j.issn.1001-3598.2008.05.013.

    ZOU L H, LIANG S G, ZOU Y, et al. Investigation on wind load shape coefficient of lattice towers by wind tunnel tests [J]. Special Structures, 2008, 25(5): 41-43,68. DOI: 10.3969/j.issn.1001-3598.2008.05.013.

    [7] 沈国辉, 项国通, 郭勇, 等. 圆钢输电塔架的风荷载体型系数研究 [J]. 特种结构, 2015, 32(5): 62-65,85.

    SHEN G H, XIANG G T, GUO Y, et al. Research on body shape coefficients of wind loads on steel transmission towers with cylindrical members [J]. Special Structures, 2015, 32(5): 62-65,85.

    [8] 林汪勇, 陈寅, 杨彪. 1000 kV变电构架位移风振系数研究 [J]. 低温建筑技术, 2013, 35(4): 75-76. DOI: 10.3969/j.issn.1001-6864.2013.04.030.

    LIN W Y, CHEN Y, YANG B. Wind displacement vibration coefficient research of 1 000 kV truss structures [J]. Low Temperature Architecture Technology, 2013, 35(4): 75-76. DOI: 10.3969/j.issn.1001-6864.2013.04.030.

    [9] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范: GB 50009—2012 [S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Load code for the design of building structures: GB 50009—2012 [S]. Beijing: China Architecture & Building Press, 2012.

    [10] 祝曦晨. 输电塔架及输电塔线体系等效静力风荷载研究 [D]. 武汉: 武汉大学, 2017.

    ZHU X C. Investigation on equivalent static wind load of lattice towers and transmission tower-line system [D]. Wuhan: Wuhan University, 2017.

    [11] 张相庭. 结构风工程: 理论·规范·实践 [M]. 北京: 中国建筑工业出版社, 2006.

    ZHANG X T. Structural wind engineering: Theory·Standard·Practice [M]. Beijing: China Architecture & Building Press, 2006.

    [12] 国家能源局. 变电站建筑结构设计技术规程: DL/T 5457—2012 [S]. 北京: 中国电力出版社, 2012.

    National Energy Administration. Technical code for the design of substation buildings and structures: DL/T5457—2012 [S]. Beijing: China Electric Power Press, 2012.

    [13] 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 高耸结构设计标准: GB 50135—2019 [S]. 北京: 中国计划出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China, State Administration for Market Regulation. Standard for design of high-rising structures: GB 50135—2019 [S]. Beijing: China Planning Press, 2019.

  • 期刊类型引用(2)

    1. 杨结春,朱杰鸿,马维勇. 基于Midas Gen的±800 kV直流极线RI电容器组抗震性能评估及防风加固研究. 高压电器. 2025(04): 139-149 . 百度学术
    2. 王永华,陈国庆,李云山,廖孟轲. 山地坡向风对输电线路导线风偏影响. 内蒙古电力技术. 2024(05): 85-93 . 百度学术

    其他类型引用(0)

图(1)  /  表(6)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  129
  • PDF下载量:  70
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-11-23
  • 网络出版日期:  2023-01-03
  • 刊出日期:  2023-01-03

目录

    ZHANG Hua

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回