-
文章采用导管架基础灌浆连接段的缩尺试件开展轴向静力加载试验,其中无安装误差的标准试件编号为A-1,具体尺寸如图2所示。灌浆连接段试件的套管外壁直径为245 mm,桩管外壁直径为325 mm,两者管壁厚均为8 mm,中间连接段灌浆段长度为625 mm,并含有5对剪力键,剪力键间距为100 mm。
基于DNV规范[9]的分类标准中关于安装误差的分类,文章对灌浆连接段安装误差的定义方式如图3所示。
为了研究纵向和横向安装误差对于灌浆连接段的轴向力学性能的影响,文章基于标准试件A-1分别设计了误差试件D1A-2和D3A-2,其试件的几何参数以及所含误差如表1所示。
表 1 缩尺试件具体参数及分组
Table 1. Specific parameters and grouping of reduced-scale test pieces
试件编号 套管 桩管 灌浆段 剪力键 安装误差 外径DJL/mm 厚度tJL/mm 长度LJL/mm 外径Dp/mm 厚度tp/mm 长度Lp/mm 长度Lg/mm 厚度tg/mm 间距s/mm 高度h/mm 数量n A-1 245 8 825 325 8 825 625 32 100 6 5 - D1A-2 245 8 825 325 8 825 625 32 100 6 5 v/s=0.25 D3A-2 245 8 825 325 8 825 625 32 100 6 5 e/tg=0.375 -
对本试验中所用钢材开展材性试验,可得钢材的弹性模量为2.09×105 MPa,屈服强度为301.7 MPa,极限抗拉强度为474.5 MPa;对所用灌浆料进行材性试验,可得灌浆料的弹性模量为4.36×104 MPa,圆柱体抗压强度为78.3 MPa,同时根据欧洲混凝土规范CEB-FIP-2010[16],可进一步计算得到灌浆料的断裂能为0.175 3 N/mm。
-
该轴向静力加载试验在上海市建筑科学研究院结构试验室开展,加载装置包括加载头、球铰、荷载传感器以及钢制底座等,如图4所示,位移计分布以及测量内容如图5所示。试验中所采用的最大轴向荷载Pmax=696.75 kN,且加载过程采用分级加载,即将最大荷载平均分为5级依次加载,且每次需等待上一级荷载稳定后,再开始下一级荷载的加载。
-
本试验中采用应变片对灌浆连接段试件的各点应变变化进行测量。其中,对于纵向安装误差试件D1A-2,其应变片对称布置在试件90°~270°的纵截面平面上,共38个应变片,如图6(a)所示;对于横向安装误差试件D3A-2,考虑到管内的灌浆料厚度分布并不均匀,其应变片除在横向安装误差所在截面布置应变片(270°方向为灌浆料最厚侧,90°方向为灌浆料最薄侧),还需在套管180°方向一侧布置,共计65个,如图6(b)所示。
-
以灌浆连接段试件顶板与底板的位移差值作为套管与钢管的相对位移量,并将试件D1A-2、D3A-2的轴向荷载-相对位移曲线与试件A-1进行对比,如图7所示,3个试件在轴向静力加载过程中始终处于弹性阶段,荷载与位移呈线性比例增大。然而,含有纵向安装误差(v/s=0.25)的试件D1A-2较标准试件A-1的轴向刚度有所增大,即在最大试验荷载Pmax=696.75 kN下,试件D1A-2的位移为0.263 mm,试件A-1的位移为0.336 mm,v/s=0.25的纵向安装误差下灌浆连接段的轴向刚度增大约28%;而含有横向安装误差(e/tg=0.375)的试件D3A-2较标准试件A-1的轴向刚度也有所增大,即在最大试验荷载Pmax=696.75 kN下,试件D3A-2的位移为0.273 mm,试件A-1的位移为0.336 mm,e/tg=0.375的横向安装误差下灌浆连接段的轴向刚度增大约23%。
图 7 误差试件与标准试件的荷载-位移曲线对比
Figure 7. Comparison of load-displacement curves between error test pieces and standard test pieces
另外,文章也从套管和桩管管壁纵向应变的角度对误差试件的结果进行比较分析:对于含有纵向安装误差的试件D1A-2,其与标准试件A-1相比,两者的应变分布趋势相近,即套管管壁上部应变大下部应变小,桩管管壁上部应变小下部应变大,如图8所示。然而在纵向安装误差影响下,套管管壁最上部应变和桩管管壁最下部应变分别增大了15%和26%,这说明纵向安装误差对灌浆连接段端部的纵向应变大小有一定的放大作用。
图 8 试件D1A-2与试件A-1的管壁纵向应变分布对比
Figure 8. Comparison of longitudinal strain distribution on pipe wall between test piece D1a-2 and test piece A-1
对于含有横向安装误差的试件D3A-2,其套管和桩管管壁各个方向的纵向应变分布趋势也并没有随着横向安装误差的出现而发生改变,其总体应变分布趋势依然是套管上部应变大下部应变小,桩管上部应变小下部应变大,如图9所示,这符合了灌浆连接段的传力机制。但由于横向安装误差的影响,套管管壁最上部的应变在90°方向一侧增大了22%,180°方向一侧减小了37%,270°方向一侧减小了4%;桩管管壁最下部的应变在90°方向一侧增大了7%,180°一侧减小了12%,270°一侧增大了9%,这说明横向安装误差较明显地改变了灌浆连接段的应变分布,从而可能改变灌浆连接段在轴向加载下的破坏模式。
Research on Axial Mechanical Properties of the Grouted Connection Section Considering Installation Errors
-
摘要:
目的 随着海上风机工程逐渐向深远海区域发展,海上恶劣的施工环境极有可能导致导管架基础灌浆连接的安装产生误差进而影响连接的轴向力学性能,故需要研究安装误差对于灌浆连接段轴向力学性能的影响规律。 方法 首先开展灌浆连接段缩尺试件的轴向静力加载试验,随后采用有限元分析方法来模拟对应试件的轴向加载过程,其模拟结果与试验数据显示出较好的拟合性。 结果 研究结果表明:纵向、横向安装误差的增大会导致灌浆连接段轴向刚度的增大,并会进一步改变套管和桩管的纵向应变分布;另外,安装误差的增大也会引起轴向加载过程中灌浆料内第三主应力最大值的增大和其分布位置的变化。 结论 综上所述,安装误差对导管架基础灌浆连接段轴向力学性能的影响可能导致灌浆连接段破坏模式的改变,故需根据安装误差的影响规律来对其危害予以充分的考虑与评估。 Abstract:Introduction With the development of offshore wind turbine works to deep sea areas, the challenging construction environment tends to result in errors in the installation of the grouted connection for the jacket foundation. These errors can subsequently affect the axial mechanical properties of the grouted connection. Therefore, it is necessary to study the impact laws of installation errors on the axial mechanical properties of the grouted connection section. Method The study was commenced by conducting axial static loading tests on reduced-scale test piece of the grouted connection section, which was followed by simulating the axial loading process of the corresponding test piece using the finite element analysis method. The simulation results were found to align well with the experimental data, indicating a successful outcome. Result According to the research findings, the increasing in longitudinal and transverse installation errors can lead to an increase in the axial stiffness of the grouted connection section. This, in turn, further alters the longitudinal strain distribution of the casing and pile pipe. Additionally, the increase in installation errors can lead to an increase in the maximum value of the third principal stress in the grouting materials during the axial loading process, as well as changes in its distribution location. Conclusion In conclusion, the influence of installation errors on the axial mechanical properties of the grouted connection section for the jacket foundation can cause alterations in failure modes of the grouted connection section. Therefore, it is needed to consider and evaluate the harm caused by the impact laws of installation errors based on their influence rules. -
表 1 缩尺试件具体参数及分组
Tab. 1. Specific parameters and grouping of reduced-scale test pieces
试件编号 套管 桩管 灌浆段 剪力键 安装误差 外径DJL/mm 厚度tJL/mm 长度LJL/mm 外径Dp/mm 厚度tp/mm 长度Lp/mm 长度Lg/mm 厚度tg/mm 间距s/mm 高度h/mm 数量n A-1 245 8 825 325 8 825 625 32 100 6 5 - D1A-2 245 8 825 325 8 825 625 32 100 6 5 v/s=0.25 D3A-2 245 8 825 325 8 825 625 32 100 6 5 e/tg=0.375 -
[1] 王革栋. 海上风电基础结构选型与施工工艺探讨 [J]. 绿色环保建材, 2019(4): 235-236. DOI: 10.16767/j.cnki.10-1213/tu.2019.04.173. WANG G D. Discussion on offshore wind power infrastructure selection and construction technology [J]. Green environmental protection building, 2019(4): 235-236. DOI: 10.16767/j.cnki.10-1213/tu.2019.04.173. [2] 刘桢, 俞炅旻, 黄德财, 等. 海上风电发展研究 [J]. 船舶工程, 2020, 42(8): 20-25. LIU Z, YU J M, HUANG D C, et al. Offshore wind development research [J]. Ship engineering, 2020, 42(8): 20-25. [3] 徐荣彬, 元国凯, 刘晋超, 等. 海上风机导管架基础灌浆连接段受力分析 [J]. 南方能源建设, 2015, 2(3): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.016. XU R B, YUAN G K, LIU J C, et al. Analysis of grouted connection in offshore wind turbine jacket foundation [J]. Southern energy construction, 2015, 2(3): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.016. [4] SCHAUMANN P, LOCHTE-HOLTGREVEN S, STEPPELER S. Special fatigue aspects in support structures of offshore wind turbines [J]. Materialwissenschaft und werkstofftechnik, 2011, 42(12): 1075-1081. DOI: 10.1002/mawe.201100913. [5] LÖHNING T, MUURHOLM U. Finite element-based design of grouted connections with shear keys for offshore wind turbines [J]. Structural engineering international, 2013, 23(3): 295-302. DOI: 10.2749/101686613X13627347099791. [6] Det Norske Veritas. Design of offshore wind turbine structures: DNV-OS-J101 [S]. Norway: DNV, 2014. [7] 元国凯, 汤东升, 刘晋超, 等. 海上风电机组基础灌浆技术应用与发展 [J]. 南方能源建设, 2017, 4(1): 10-17. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.002. YUAN G K, TANG D S, LIU J C, et al. Grouting technology application and development in offshore wind farm [J]. Southern energy construction, 2017, 4(1): 10-17. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.002. [8] 徐爱民, 纪延涛, 陈志堂, 等. 浅谈钢质桩基式导管架海上安装及注意事项 [J]. 中国海洋平台, 2006, 21(6): 40-45. DOI: 10.3969/j.issn.1001-4500.2006.06.010. XU A M, JI Y T, CHEN Z T, et al. Disassembly installation and attention problems of petrol pipe-platform on the sea [J]. China offshore platform, 2006, 21(6): 40-45. DOI: 10.3969/j.issn.1001-4500.2006.06.010. [9] DNVGL. Analysis of grouted connections using the finite element method: DNVGL-RP-0419 [S]. Norway: DNV, 2016. [10] LAMPORT W B, JIRSA J O, YURA J A. Strength and behavior of grouted pile-to-sleeve connections [J]. Journal of structural engineering, 1991, 117(8): 2477-2498. DOI: 10.1061/(ASCE)0733-9445(1991)117:8(2477). [11] 吴兆旗, 游先辉, 单宁康, 等. 考虑偏心的不同尺寸灌浆连接轴向承载性能 [J]. 广西大学学报(自然科学版), 2021, 46(4): 854-865. DOI: 10.13624/j.cnki.issn.1001-7445.2021.0854. WU Z Q, YOU X H, SHAN N K, et al. Axial load capacity of grouted connections with different sizes considering eccentricity [J]. Journal of Guangxi University (natural science edition), 2021, 46(4): 854-865. DOI: 10.13624/j.cnki.issn.1001-7445.2021.0854. [12] 李筑轩, 陈涛, 赵淇, 等. 考虑偏心误差的灌浆连接段受弯承载力研究 [J]. 建筑结构学报, 2017, 38(增刊1): 465-470. DOI: 10.14006/j.jzjgxb.2017.S1.065. LI Z X, CHEN T, ZHAO Q, et al. Bending behavior of grouted connections considering eccentricity errors [J]. Journal of building structures, 2017, 38(Suppl. 1): 465-470. DOI: 10.14006/j.jzjgxb.2017.S1.065. [13] 宗红霞. 海上风机单桩基础扶正导向装置研究 [D]. 哈尔滨: 哈尔滨工程大学, 2009. DOI: 10.7666/d.y1489301. ZONG H X. Research on declination rectification and guidance device based on offshore wind turbine mnopile foundation [D]. Harbin: Harbin Engineering University, 2009. DOI: 10.7666/d.y1489301. [14] 兰世平, 周通, 贾小刚. 深远海海上风电导管架基础安装技术与实践探索 [J]. 水电与新能源, 2020, 34(2): 39-42. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2020.02.009. LAN S P, ZHOU T, JIA X G. Exploration and practice of the jacket foundation installation technology for far-reaching offshore wind power projects [J]. Hydropower and new energy, 2020, 34(2): 39-42. DOI: 10.13622/j.cnki.cn42-1800/tv.1671-3354.2020.02.009. [15] 武晓飞. 开放海域淤泥质地基水下导管架基础施工精度控制技术研究 [J]. 工程技术研究, 2020, 5(12): 108-109. DOI: 10.19537/j.cnki.2096-2789.2020.12.051. WU X F. Research on construction accuracy control technology of underwater jacket foundation in silt texture in open sea [J]. Engineering and technological research, 2020, 5(12): 108-109. DOI: 10.19537/j.cnki.2096-2789.2020.12.051. [16] BETONBAU. Design [M]//FIB. Fib Model Code for Concrete Structures 2010. Lausanne: Ernst & Sohn, 2013: 190-350. DOI: 10.1002/9783433604090.ch7. [17] 聂建国, 王宇航. ABAQUS中混凝土本构模型用于模拟结构静力行为的比较研究 [J]. 工程力学, 2013, 30(4): 59-67. DOI: 10.6052/j.issn.1000-4750.2011.07.0420. NIE J G, WANG Y H. Comparison study of constitutive model of concrete in ABAQUS for static analysis of structures [J]. Engineering mechanics, 2013, 30(4): 59-67. DOI: 10.6052/j.issn.1000-4750.2011.07.0420. [18] 陈涛, 姚政韬, 王衔, 等. 海上风机灌浆连接段应力评价方法探析 [J]. 南方能源建设, 2020, 7(1): 33-39. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.005. CHEN T, YAO Z T, WANG X, et al. A stress evaluation method for grouted connections of offshore wind turbines [J]. Southern energy construction, 2020, 7(1): 33-39. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.005. [19] 仲伟秋, 麻晔, 杨礼东, 等. 海上风电桩基础与导管架灌浆连接段的ANSYS分析 [J]. 沈阳建筑大学学报(自然科学版), 2012, 28(4): 663-669. ZHONG W Q, MA Y, YANG L D, et al. The analysis of grouted connection between pile foundation and jacket for offshore wind turbine by ANSYS [J]. Journal of Shenyang Jianzhu University (natural science edition), 2012, 28(4): 663-669. [20] 陈涛, 房奇, 张持海, 等. 压弯荷载下单桩基础灌浆连接段性能分析 [J]. 南方能源建设, 2020, 7(4): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.004. CHEN T, FANG Q, ZHANG C H, et al. Mechanical properties of the grouted connection under the action of compression-bending load [J]. Southern energy construction, 2020, 7(4): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.004. [21] LOTSBERG I. Structural mechanics for design of grouted connections in monopile wind turbine structures [J]. Marine structures, 2013, 32: 113-135. DOI: 10.1016/j.marstruc.2013.03.001.