2020, 7(1): 76-83.
DOI: 10.16516/j.gedi.issn2095-8676.2020.01.012
[目的] 散裂靶为次临界反应堆重要组成部分,为了得到符合要求的靶内结构,通过对现有的几种散列靶的流道进行扫描,结合各种靶型的优点,设计一种适当的散裂靶结构。
[方法] 通过CFD软件扫描流场,进行热工分析;MCNPX用于散裂靶物理分析。为验证计算思路和方法,重复文献中工作,并把计算结果与文献中结果做对比,二者符合良好。
[结果] 对设计的散列靶进行热工水力分析,得出在靶窗厚度不变的情况下,不同进口速度、不同束斑直径、不同束流强度下的结果;计算束斑直径不变情况下,不同靶窗厚度对应的允许的束流强度;把符合散裂靶热工设计要求并有充分裕量的工况进行整理。推导出电流密度随半球型角度变化的公式,得出不同靶窗厚度下的最大允许电流密度。
[结论] 研究成果对铅铋散裂靶的初步设计有重要意义。
摘要:
[目的] 散裂靶为次临界反应堆重要组成部分,为了得到符合要求的靶内结构,通过对现有的几种散列靶的流道进行扫描,结合各种靶型的优点,设计一种适当的散裂靶结构。
[方法] 通过CFD软件扫描流场,进行热工分析;MCNPX用于散裂靶物理分析。为验证计算思路和方法,重复文献中工作,并把计算结果与文献中结果做对比,二者符合良好。
[结果] 对设计的散列靶进行热工水力分析,得出在靶窗厚度不变的情况下,不同进口速度、不同束斑直径、不同束流强度下的结果;计算束斑直径不变情况下,不同靶窗厚度对应的允许的束流强度;把符合散裂靶热工设计要求并有充分裕量的工况进行整理。推导出电流密度随半球型角度变化的公式,得出不同靶窗厚度下的最大允许电流密度。
[结论] 研究成果对铅铋散裂靶的初步设计有重要意义。