• 匿名盲审
  • 学术期刊非营利性
  • 全球免费开放获取全文
  • 最新科研成果提供绿色通道

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阶煤电化学氧化制腐植酸的研究进展

白汝展 李娜 范剑明 李哲函 候炎飞 黄战平 周兴

白汝展, 李娜, 范剑明, 李哲函, 候炎飞, 黄战平, 周兴. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
引用本文: 白汝展, 李娜, 范剑明, 李哲函, 候炎飞, 黄战平, 周兴. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
BAI Ruzhan, LI Na, FAN Jianming, LI Zhehan, HOU Yanfei, HUANG Zhanping, ZHOU Xing. Research Progress on Electro-Chemical Oxidation of Low-Rank Coal to Humic Acid[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
Citation: BAI Ruzhan, LI Na, FAN Jianming, LI Zhehan, HOU Yanfei, HUANG Zhanping, ZHOU Xing. Research Progress on Electro-Chemical Oxidation of Low-Rank Coal to Humic Acid[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017

低阶煤电化学氧化制腐植酸的研究进展

doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
基金项目: 国家自然科学基金(21868021);鄂尔多斯科技计划项目(2021YY -工 -119-49);河北省高等学校科学技术研究项目(QN2021090);河北师范大学博士基金(L2021034)
详细信息
    作者简介:

    白汝展,1997-,男,河北衡水人,内蒙古工业大学化工学院硕士研究生在读,主要从事重质碳资源的电催化氧化研究(e-mail)3226523053@qq.com

    李娜,1987-,女,内蒙赤峰人,内蒙古工业大学化工学院副教授,主要从事煤炭的清洁利用,煤基功能材料的开发与利用,重质碳资源的电催化氧化等方面的研究(e-mail)nali87@imut.edu.cn

    范剑明,1987-,男,内蒙鄂尔多斯人,鄂尔多斯职业学院化学工程系副教授,主要从事煤基固废高值化利用等方面的研究(e-mail)726861598@qq.com

    李哲函,1995-,男,内蒙鄂尔多斯人,内蒙古工业大学化工学院硕士研究生在读,主要从事重质碳资源的电催化氧化研究(e-mail)247935619@qq.com

    候炎飞,1982-,男,河北石家庄人,河北师范大学中燃工学院讲师,主要从事人工智能在新能源系统中的应用等方面的工作(e-mail)6882391@qq.com

    黄战平,1969-,男,河北石家庄人,河北师范大学中燃工学院实验师,(email)hzp6617827@163.com

    周兴,1987-,男,河北石家庄人,博士,讲师,主要从事重质碳能源的清洁利用,氢能源的制备等方面的研究(e-mail)zhoux@hebtu.edu.cn

    通讯作者:

    周兴,(e-mail)zhoux@hebtu.edu.cn

  • 中图分类号: TQ540+1

Research Progress on Electro-Chemical Oxidation of Low-Rank Coal to Humic Acid

  • 摘要:   目的  随着可再生能源的大力发展,“双碳”背景下低阶煤的清洁高效利用不仅提高了资源利用率、经济价值,更具有重大的社会意义。褐煤、风化煤等低阶煤是煤基腐植酸的主要来源,腐植酸因具有弱酸性、氧化还原性、生理活性等特性,用途广泛。然而直接提取方式难以实现煤中腐植酸的高效提取,通常需经氧化预处理来提高腐植酸的产率。  方法  文章首先简述了腐植酸的性质和应用;然后,介绍了传统的化学氧化的工艺过程、原理和特点,综述了新型低阶煤电化学氧化方法及优势;最后,对低阶煤电化学制腐植酸进行了展望,以期为低阶煤制取腐植酸提供参考。  结果  电化学氧化法具有条件温和、反应易于控制、产率高、减少环境污染等优点,是一种比较有前景制备腐植酸的方法。  结论  采用可再生电力驱动的电化学氧化实现低阶煤中腐植酸的高效提取是实现低阶煤非燃料高附加值利用的途径之一。
  • 图  1  腐植酸分子结构示意图

    Fig.  1  Molecular structure of humic acid

    图  2  煤中提取腐植酸的流程示意图

    Fig.  2  Schematic diagram of the process of extracting humic acid from coal

    图  3  H2O2氧化条件对HA产率的影响[20]

    Fig.  3  Effect of H2O2 oxidation conditions on HA yield

    图  4  煤中提取腐植酸的主要步骤

    Fig.  4  The main step in extracting humic acid from coal

    图  5  电化学制取腐植酸的实验流程

    Fig.  5  Experimental process of electrochemical preparation of humic acid

    表  1  化学氧化与电化学氧化的对比

    Tab.  1.   Comparison of chemical oxidation and electrochemical oxidation

    优点缺点总产率参考文献
    直接提取①反应条件温和②符合绿色环保理念①只能提取游离HA(黄腐酸)②产率低约10%[34]
    硝酸氧化①HA产率高②氧化过程快①破坏HA结构,使N元素增多②HNO3污染环境50%~88%[14][17]
    H2O2氧化①符合绿色环保理念②反应条件温和③氧化时间短①成本高②转化率低③H2O2不稳定,易分解40%~65%[20][35]
    碱氧氧化①反应条件温和②HA产率高①碱碳比大②氧化周期长③成本高约80%[35]
    电化学氧化①反应条件温和②反应易于控制③经济环保④煤炭利用率高①能源转化速率慢②没有广泛普及③受反应条件限制70%~95%[25][29]
    下载: 导出CSV
  • [1] 曹勇飞, 吴国光, 孟献梁, 等. 低阶煤中所含腐植酸的制备及应用 [J]. 煤炭技术, 2009, 28(12): 134-136.

    CAO Y F, WU G G, MENG X L, et al. Preparation and application of humic acid from low-rank coal [J]. Coal Technology, 2009, 28(12): 134-136.
    [2] 张佳豪. 褐煤基腐殖酸/壳聚糖复合吸附剂制备及其吸附亚甲基蓝性能研究 [D]. 呼和浩特: 内蒙古工业大学, 2021. DOI:  10.27225/d.cnki.gnmgu.2021.000443.

    ZHANG J H. Preparation of lignite-based humic acid/chitosan composite adsorbent and its adsorption performance for methylene blue [D]. Huhhot: Inner Mongolia University of Technology, 2021. DOI:  10.27225/d.cnki.gnmgu.2021.000443.
    [3] ZHENG Q, SHI B J, LI Z, et al. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems [J]. Advanced Science, 2017: 1700029. DOI:  10.1002/advs.201700029.
    [4] 曾宪成, 成绍鑫. 腐植酸的主要类别 [J]. 腐植酸, 2002(2): 4-6. DOI:  10.19451/j.cnki.issn1671-9212.2002.02.001.

    ZENG X C, CHENG S X. Main categories of humic acid [J]. Humic Acid, 2002(2): 4-6. DOI:  10.19451/j.cnki.issn1671-9212.2002.02.001.
    [5] WANG D Z. The fifth China-Japan Symposium on Coal and C1 Chemistry [J]. Applied Catalysis A: General, 1996, 146(2): N5-N7. DOI:  10.1016/S0926-860X(97)80009-9.
    [6] KURKOVÁ M, KLIKA Z, KLIKOVÁ C, et al. Humic acids from oxidized coals I. Elemental composition, titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infrared sp-ectroscopy [J]. Chemosphere, 2004, 54(8): 1237-1245. DOI:  10.1016/j.chemosphere.2003.10.020.
    [7] CHENG G, NIU Z Y, ZHANG C X, et al. Extraction of humic acid from lignite by KOH-hydrothermal method [J]. Applied Sciences, 2019, 9(7): 1356. DOI:  10.3390/app9071356.
    [8] 周剑林, 刘伟银, 冯涛. H2O2氧化胜利褐煤制备腐植酸的影响研究 [J]. 现代化工, 2018, 38(2): 91-94. DOI:  10.16606/j.cnki.issn0253-4320.2018.02.021.

    ZHOU J L, LIU W Y, FENG T. Study on influence factors of manufacturing humic acids through oxidationof Shengli lignite by hydrogen peroxide [J]. Modern Chemical Industry, 2018, 38(2): 91-94. DOI:  10.16606/j.cnki.issn0253-4320.2018.02.021.
    [9] 曹德凤, 张水花. 曲靖褐煤硝酸氧解制备腐植酸的实验研究 [J]. 山东化工, 2015, 44(23): 22-23, 25. DOI:  10.19319/j.cnki.issn.1008-021x.2015.23.011.

    CAO D F, ZHANG S H. An experimental study of using HNO3 for producing humic acid fertilizer from brown coal and properties of the products [J]. Shandong Chemical Industry, 2015, 44(23): 22-23, 25. DOI:  10.19319/j.cnki.issn.1008-021x.2015.23.011.
    [10] YAN S D, ZHANG N Y, LI J, et al. Characterization of humic acids from original coal and its oxidization production [J]. Scientific Reports, 2021, 11(1): 15381. DOI:  10.1038/s41598-021-94949-0.
    [11] 张传祥, 张效铭, 程敢. 褐煤腐植酸提取技术及应用研究进展 [J]. 洁净煤技术, 2018, 24(1): 6-12. DOI:  10.13226/j.issn.1006-6772.2018.01.002.

    ZHANG C X, ZHANG X M, CHENG G. Research progress on extraction technology and application of lignite humic acid [J]. Clean Coal Technology, 2018, 24(1): 6-12. DOI:  10.13226/j.issn.1006-6772.2018.01.002.
    [12] ESTÉVEZ M, JUAN R, RUIZ C, et al. Formation of humic acids in lignites and subbituminous coals by dry air oxidation [J]. Fuel, 1990, 69(2): 157-160. DOI:  10.1016/0016-2361(90)90166-n.
    [13] BERGH J J, CRONJÉ I J, DEKKER J, et al. Non-catalytic oxidation of water-slurried coal with oxygen: ide-ntification of fulvic acids and acute toxicity [J]. Fuel, 1997, 76(2): 149-154. DOI:  10.1016/S0016-2361(96)00194-9.
    [14] 朱之培, 高晉生, 池敬兴. 褐煤硝酸氧解的研究 [J]. 燃料化学学报, 1965, 6(3): 235-243.

    ZHU Z P, GAO J S, CHI J X. Studies on the oxidation of brown coal with nitric acid [J]. Acta Foculio-Chimica Sinica, 1965, 6(3): 235-243.
    [15] FONG S S, SENG L, MAJRI N B, et al. A comparative eva-luation on the oxidative approaches for extrac-tion of humic acids from low rank coal of mukah, sarawak [J]. Journal of the Brazilian Chemical Society, 2007, 18(1): 34-40. DOI:  10.1590/S0103-50532007000100003.
    [16] 朱之培, 高晋生. 煤化学 [M]. 上海, 上海科学技术出版社, 1984: 97-107.

    ZHU Z P, GAO J S. Coal Chemistry [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1984: 97-107.
    [17] 高丽娟, 杨小莹, 王世强, 等. 超声-硝酸联合法提取褐煤腐植酸工艺 [J]. 光谱实验室, 2013, 30(6): 2955-2959. DOI:  10.3969/j.issn.1004-8138.2013.06.052.

    GAO L J, YANG X Y, WANG S Q, et al. Extraction process of humic acid from lignite by ultrasonic-nitrate [J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6): 2955-2959. DOI:  10.3969/j.issn.1004-8138.2013.06.052.
    [18] 李宏鹤. 褐煤和柴煤中腐植酸的测定 [J]. 腐植酸, 2005(6): 28-32. DOI:  10.19451/j.cnki.issn1671-9212.2005.06.008.

    LI H H. Determination of humic acid in brown coal and lignite [J]. Humic Acid, 2005(6): 28-32. DOI:  10.19451/j.cnki.issn1671-9212.2005.06.008.
    [19] DOSKOČIL L, GRASSET L, VALKOVÁ D, et al. Hydrogen peroxide oxidation of humic acids and lignite [J]. Fuel, 2014, 134: 406-413. DOI:  10.1016/j.fuel.2014.06.011.
    [20] 周孝菊, 易芸, 何志艳, 等. H2O2氧解对褐煤腐植酸及含氧官能团的影响 [J]. 应用化工, 2016, 45(10): 1869-1872, 1877. DOI:  10.16581/j.cnki.issn1671-3206.20160705.032.

    ZHOU X J, YI Y HE Z Y, et al. Effect of H2O2 to humic acid and oxygen-containing functional groups of lignite [J]. Applied Chemic-Al Industry, 2016, 45(10): 1869-1872, 1877. DOI:  10.16581/j.cnki.issn1671-3206.20160705.032.
    [21] LINKEVICH E. V., YUDINA N. V., SAVEL'EVA A. V, et al Changes in the structural characteristics and composition of oxidized coal because of mechano chemical action [J]. Solid Fuel Chemistry, 2022, 56(2): 145-151. DOI:  10.3103/S0361521922020045.
    [22] LI W, QIN Z F, NARUSE I. The 11th China-Japan Symposium on Coal and C1 Chemistry [J]. Fuel, 2013, 109: 1. DOI:  10.1016/j.fuel.2013.04.039.
    [23] ZHANG Y J, LIU W J, HU X F, et al. Extraction an-d functional group characterization of fulvic acid from hami lignite [J]. Chemistry. Sel-ect, 2019, 4(4): 1448-1455. DOI:  10.1002/slct.201803291.
    [24] DAS T, BORA M, TAMULY J, et al. Coal-derived humic acid for application in acid mine drainage (amd) water treatment and electrochemical devices [J]. International Journal of Coal Science & Technology, 2021, 8(6): 1479-1490. DOI:  10.1007/s40789-021-00441-5.
    [25] 袁润. 碱性介质中大庆油页岩电化学氧化研究 [D]. 大连: 大连理工大学, 2015.

    YUAN R. Electrochemical oxidation of Daqing oil shale in alkaline medium [D].Dalian: Dalian University of Technology, 2015.
    [26] BELCHER R. The anodic oxidation of coal. Part I. Introduction and preliminary experiments [J]. Journal of the Society of Chemical Industry, 1948, 67(5): 213-216. DOI:  10.1002/jctb.5000670515.
    [27] BElCHER R. The anodic oxidation of coal. Part Ⅱ. The effect of oxidizing vitrain and ulmic acids at various metal anodes [J]. Journal of the Society of Chemical Industry, 1948, 67(6): 217-218. DOI:  10.1002/jctb.5000670601.
    [28] 朱凌岳, 王宝辉, 吴红军. 电解水煤浆制氢技术研究进展 [J]. 化工进展, 2016, 35(10): 3129-3135. DOI:  10.16085/j.issn.1000-6613.2016.10.016.

    ZHU L Y, WANG B H, WU H J. Review on electrochemical splitting of coal water slurry for hydrogen [J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3129-3135. DOI:  10.16085/j.issn.1000-6613.2016.10.016.
    [29] 何德民, 关珺, 张秋民, 等. 褐煤电化学氧化制取腐植酸的方法: CN102747381A [P]. 2012-10-24.

    HE D M, GUAN J, ZHANG Q M, et al. Methods for preparinghumic acid by electrochemical oxidation of lignite: CN102747381A [P], 2012-10-24.
    [30] 向康, 孙志刚, 何建波, 等. Fe3+辅助煤浆氧化制氢研究 [J]. 燃料化学学报, 2016, 44(5): 621-627. DOI:  10.3969/j.issn.0253-2409.2016.05.015.

    XIANG K, SUN Z G, HE J B, et al. Hydrogen production from oxidation of coal slurries assisted by ferricions [J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 621-627. DOI:  10.3969/j.issn.0253-2409.2016.05.015.
    [31] 刘欢, 王志忠. 煤电解氧化的伏安特性的研究 [J]. 燃料化学学报, 2002, 30(2): 182-185. DOI:  10.3969/j.issn.0253-2409.2002.02.018.

    LIU H, WANG Z Z. Study on volt-ampere characteristics of coal oxidation [J]. Journal of Fuel Chemistry and Technology, 2002, 30(2): 182-185. DOI:  10.3969/j.issn.0253-2409.2002.02.018.
    [32] LALVANI S, PATA M, COUGHLIN R W. Electrochemical oxidation of lignite in basic media [J]. Fuel, 1986, 65(1): 122-128. DOI:  10.1016/0016-2361(86)90152-3.
    [33] LYNCH C S. The electrolytic oxidation of coal [D]. Morga- ntown: West Virginia University, 1932.
    [34] SCHWARTZ D, HALL P J, MARSH H. Macromolec-ular and chemical changes induced by air-oxidation of a medium volatile bituminous coal [J]. Fuel, 1989, 68(7): 868-871. DOI:  10.1016/0016-2361(89)90122-1.
    [35] 张殿凯, 李艳红, 王苗, 等. 氧化法提取褐煤腐植酸的研究进展 [J]. 应用化工, 2021, 50(10): 2851-2855, 2860. DOI:  10.16581/j.cnki.issn1671-3206.20210721.008.

    ZHANG D K, LI Y H, WANG M, et al. Research progress on extraction of humic acid from lignite by oxidation [J]. Applied Chemical Industry, 2021, 50(10): 2851-2855, 2860. DOI:  10.16581/j.cnki.issn1671-3206.20210721.008.
    [36] FONG S S, SENG L, MAT H B. Reuse of nitric acid in theoxidative pretreatment step for preparation of humic acids from low rank coal of Mukah, Sarawak [J]. Journal of the Brazilian Chemical Society, 2007, 18(1): 41-46. DOI:  10.1590/S0103-50532007000100004.
  • [1] 郑彦春, 陕超伦, 张晋宾.  长持续时间储能体系研究现状及发展展望 . 南方能源建设, 2024, 11(2): 93-101. doi: 10.16516/j.ceec.2024.2.09
    [2] 袁照威, 杨易凡.  压缩空气储能技术研究现状及发展趋势 . 南方能源建设, 2024, 11(2): 146-153. doi: 10.16516/j.ceec.2024.2.14
    [3] 刘畅, 林汉辰, 史陈芳达, 胡明月.  中国氢燃料电池汽车市场发展现状及展望 . 南方能源建设, 2024, 11(2): 162-171. doi: 10.16516/j.ceec.2024.2.16
    [4] 夏冬辉, 卢婧, 陈曦璇, 方新宇.  磁约束等离子体电子回旋加热技术发展现状 . 南方能源建设, 2024, 11(3): 1-9. doi: 10.16516/j.ceec.2024-061
    [5] 辛甜, 高啸天, 肖楷, 罗志斌, 黄肇和, 张乃庆.  使用工况对锂离子电池电化学性能的影响 . 南方能源建设, 2024, 11(2): 139-145. doi: 10.16516/j.ceec.2024.2.13
    [6] 林刚, 戴宁怡.  电动汽车直流充电站的低阶RLC阻抗电路模型 . 南方能源建设, 2023, 10(5): 80-86. doi: 10.16516/j.gedi.issn2095-8676.2023.05.011
    [7] 王诗超, 刘嘉畅, 刘展志, 李妮.  海上风电产业现状及未来发展分析 . 南方能源建设, 2023, 10(4): 103-112. doi: 10.16516/j.gedi.issn2095-8676.2023.04.010
    [8] 胡明月, 刘萍, 董娅楠, 许传博.  长三角地区加氢站发展现状、障碍分析及对策建议 . 南方能源建设, 2023, 10(3): 1-10. doi: 10.16516/j.gedi.issn2095-8676.2023.03.001
    [9] 曾兵, 方欣, 罗宇东, 王应江, 祁峰.  翻车机下卸煤设备选择研究 . 南方能源建设, 2022, 9(S2): 53-58. doi: 10.16516/j.gedi.issn2095-8676.2022.S2.009
    [10] 孙浩程, 魏厚俊, 胡鋆, 陈曦, 王云芳, 韩玉鑫, 刘畅.  电化学储能技术在火电厂中应用研究综述 . 南方能源建设, 2022, 9(4): 63-69. doi: 10.16516/j.gedi.issn2095-8676.2022.04.008
    [11] 吴阿峰, 谭灿燊.  某1 000 MW机组采用烟风煤粉管道设计优化方案的实施效果验证 . 南方能源建设, 2021, 8(S1): 93-96. doi: 10.16516/j.gedi.issn2095-8676.2021.S1.015
    [12] 杜东明, 谭灿燊, 张翔宇.  1 000 MW机组烟风煤粉管道节能降耗探讨 . 南方能源建设, 2021, 8(1): 87-92. doi: 10.16516/j.gedi.issn2095-8676.2021.01.013
    [13] 徐金苗, 吴阿峰, 李伟科, 樊晓茹, 奉林.  燃煤电厂原煤仓防堵煤设计研究 . 南方能源建设, 2019, 6(1): 92-97. doi: 10.16516/j.gedi.issn2095-8676.2019.01.016
    [14] 胡晋岚, 王丙乾, 董剑敏.  配网工程造价管理现状及发展趋势分析 . 南方能源建设, 2019, 6(2): 106-111. doi: 10.16516/j.gedi.issn2095-8676.2019.02.019
    [15] 宋青, 董祥云.  云南小水电运营现状及发展关键影响因素探析——以迪庆地区小水电项目为例 . 南方能源建设, 2017, 4(S1): 23-27. doi: 10.16516/j.gedi.issn2095-8676.2017.S1.005
    [16] 郑开云.  超临界二氧化碳循环应用于火力发电的研究现状 . 南方能源建设, 2017, 4(3): 39-47. doi: 10.16516/j.gedi.issn2095-8676.2017.03.008
    [17] 王伟, 徐婧, 赵翔, 袁晓江, 李振新.  中国煤电机组调峰运行现状分析 . 南方能源建设, 2017, 4(1): 18-24. doi: 10.16516/j.gedi.issn2095-8676.2017.01.003
    [18] 梁嘉铭, 周倩.  波黑某电厂底开车卸煤方式优化研究 . 南方能源建设, 2016, 3(1): 137-140. doi: 10.16516/j.gedi.issn2095-8676.2016.01.029
    [19] 郑钊颖, 何登富, 王景超, 雷伟刚, 黄翔.  大型港电煤一体化能源基地信息化综合规划方案研究 . 南方能源建设, 2015, 2(1): 32-36,41. doi: 10.16516/j.gedi.issn2095-8676.2015.01.006
    [20] 韩建伟.  电化学噪声技术的基本原理及其在腐蚀研究方面的应用 . 南方能源建设, 2015, 2(S1): 26-29. doi: 10.16516/j.gedi.issn2095-8676.2015.S1.006
  • 加载中
图(5) / 表 (1)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  55
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-24
  • 录用日期:  2022-07-09
  • 修回日期:  2022-07-09
  • 网络出版日期:  2022-09-26
  • 刊出日期:  2022-09-25

低阶煤电化学氧化制腐植酸的研究进展

doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
    基金项目:  国家自然科学基金(21868021);鄂尔多斯科技计划项目(2021YY -工 -119-49);河北省高等学校科学技术研究项目(QN2021090);河北师范大学博士基金(L2021034)
    作者简介:

    白汝展,1997-,男,河北衡水人,内蒙古工业大学化工学院硕士研究生在读,主要从事重质碳资源的电催化氧化研究(e-mail)3226523053@qq.com

    李娜,1987-,女,内蒙赤峰人,内蒙古工业大学化工学院副教授,主要从事煤炭的清洁利用,煤基功能材料的开发与利用,重质碳资源的电催化氧化等方面的研究(e-mail)nali87@imut.edu.cn

    范剑明,1987-,男,内蒙鄂尔多斯人,鄂尔多斯职业学院化学工程系副教授,主要从事煤基固废高值化利用等方面的研究(e-mail)726861598@qq.com

    李哲函,1995-,男,内蒙鄂尔多斯人,内蒙古工业大学化工学院硕士研究生在读,主要从事重质碳资源的电催化氧化研究(e-mail)247935619@qq.com

    候炎飞,1982-,男,河北石家庄人,河北师范大学中燃工学院讲师,主要从事人工智能在新能源系统中的应用等方面的工作(e-mail)6882391@qq.com

    黄战平,1969-,男,河北石家庄人,河北师范大学中燃工学院实验师,(email)hzp6617827@163.com

    周兴,1987-,男,河北石家庄人,博士,讲师,主要从事重质碳能源的清洁利用,氢能源的制备等方面的研究(e-mail)zhoux@hebtu.edu.cn

    通讯作者: 周兴,(e-mail)zhoux@hebtu.edu.cn
  • 中图分类号: TQ540+1

摘要:   目的  随着可再生能源的大力发展,“双碳”背景下低阶煤的清洁高效利用不仅提高了资源利用率、经济价值,更具有重大的社会意义。褐煤、风化煤等低阶煤是煤基腐植酸的主要来源,腐植酸因具有弱酸性、氧化还原性、生理活性等特性,用途广泛。然而直接提取方式难以实现煤中腐植酸的高效提取,通常需经氧化预处理来提高腐植酸的产率。  方法  文章首先简述了腐植酸的性质和应用;然后,介绍了传统的化学氧化的工艺过程、原理和特点,综述了新型低阶煤电化学氧化方法及优势;最后,对低阶煤电化学制腐植酸进行了展望,以期为低阶煤制取腐植酸提供参考。  结果  电化学氧化法具有条件温和、反应易于控制、产率高、减少环境污染等优点,是一种比较有前景制备腐植酸的方法。  结论  采用可再生电力驱动的电化学氧化实现低阶煤中腐植酸的高效提取是实现低阶煤非燃料高附加值利用的途径之一。

English Abstract

白汝展, 李娜, 范剑明, 李哲函, 候炎飞, 黄战平, 周兴. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
引用本文: 白汝展, 李娜, 范剑明, 李哲函, 候炎飞, 黄战平, 周兴. 低阶煤电化学氧化制腐植酸的研究进展[J]. 南方能源建设, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
BAI Ruzhan, LI Na, FAN Jianming, LI Zhehan, HOU Yanfei, HUANG Zhanping, ZHOU Xing. Research Progress on Electro-Chemical Oxidation of Low-Rank Coal to Humic Acid[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
Citation: BAI Ruzhan, LI Na, FAN Jianming, LI Zhehan, HOU Yanfei, HUANG Zhanping, ZHOU Xing. Research Progress on Electro-Chemical Oxidation of Low-Rank Coal to Humic Acid[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 140-147. doi: 10.16516/j.gedi.issn2095-8676.2022.03.017
    • 腐植酸是动、植物的遗骸(主要是植物)经微生物长时间分解和转化形成的一种弱酸性有机质,一般是黑色、褐色的无定形固体粉末[1]。如图1所示,其主要由芳香环和活性基团桥连组成,活性基团中包含大量的酚羟基、羧基等酸性含氧基团,因此兼具芳香性和脂肪性[2]。由于腐植酸具有弱酸性、氧化还原性、生理活性等特性广泛用于在农业、工业、医药等领域,可用于药物的消炎剂、水煤浆添加剂、蓄电池膨胀剂、植物生长的调节剂等[3]

      图  1  腐植酸分子结构示意图

      Figure 1.  Molecular structure of humic acid

      根据腐植酸形成原因不同又可分为原生腐植酸(天然腐植酸)和再生腐植酸[4]。原生腐植酸是指泥炭、褐煤及土壤中固有的腐植酸,煤中腐植酸含量10%~80%不等,采用常见的碱溶酸析法提取率在45%左右,提取率较低。采取氧化预处理的手段,提高腐植酸的提取率,所以要用再生腐植酸。再生腐植酸是指通过人工氧化处理煤,使煤中大分子有机物质氧化降解,选择性断裂—CH2—、—O—、—C—O—等活泼桥键[5-6],经过处理得到的煤基腐植酸。因此,低阶煤中丰富的酚羟基、羧基结构可获得较高的腐植酸收率。烟煤、无烟煤等煤化程度较高,主要是芳香环结构,因此腐植酸提取率低,不适合作为制备腐植酸的原料[7]

      传统低阶煤氧化制备煤基腐植酸主要包含预氧化和后续的提取分离步骤。其中氧化步骤是影响腐植酸产率的重要步骤,通过氧化可降解更多有机质,增加含氧官能团,提高低阶煤的腐植酸产率。传统的氧化方法有空气/O2氧化[8]、硝酸氧化[9]及H2O2氧化[10]。上述方法存在腐植酸收率略低、环境污染严重等不足。因此,如何通过调控低阶煤氧化步骤,一方面提高腐植酸产率,另一方面减轻环境污染是目前低阶煤制腐植酸面临的挑战。

      双碳背景下随着可再生电力成本的降低,采用可再生电力驱动电催化反应工程被广泛关注。以低阶煤为原料、可再生电力驱动的低阶煤氧化制取腐植酸具有条件温和、清洁高效、操作简便等优点。本文综述了传统的低阶煤空气/O2氧化、硝酸氧化、H2O2氧化法和电化学氧化制取腐植酸方法,分别对比了四种氧化技术路线的优缺点,并对电化学制腐植酸进行了展望,以期为低阶煤制取腐植酸提供参考和理论指导。

    • 煤的化学氧化是利用氧化剂实现煤的定性氧化或改性控制的技术。根据氧化程度不同,可分为轻度氧化(200 ℃以下)和深度氧化,由于腐植酸分子高温氧化会被分解为其他有机酸和二氧化碳等小分子,低阶煤氧化制腐植酸通常在200 ℃以下进行。目前常见的氧化剂主要有空气/O2、硝酸、H2O2

    • 空气/O2氧化法具有氧化介质来源广泛、方便易得的特点。根据反应条件可细分为热空气干法氧化、湿法氧化及碱氧氧化。干法氧化是以热空气直接氧化煤,再用碱溶酸析法[11]提取氧化获得的腐植酸,提高氧化温度有利于有机质降解,进而提高腐植酸产率[12]。但氧化温度需低于200 ℃,以防止腐植酸被进一步氧化,导致反应速率不利于工业生产,因而空气/O2氧化法未能广泛应用。

      湿法空气/O2氧化法是将煤和水配置成水煤浆并通入空气/O2,煤的氧化过程在水煤浆中进行,因而可以避免干法空气氧化过程中的腐植酸分解。湿法空气/O2氧化法的反应温度可提高至150~350 ℃,提高了低阶煤氧化制腐植酸的速率。此外,通过提高反应压力5~20 MPa,也可进一步提高反应速率。湿法空气/O2氧化法不需添加任何额外的化学试剂,但反应速率仍难以满足工业生产的要求。

      碱氧空气/O2氧化法是在湿法空气/O2氧化法的基础上添加碱试剂。首先,碱试剂可促进煤中有机质溶解和降解;其次,碱试剂可将腐植酸转变为稳定的腐植酸盐;最后,碱试剂可吸收产生的CO2,保证O2分压[13]。因此,碱氧空气/O2氧化法不仅能够提高煤制腐植酸的速率,还能提高煤制腐植酸的产率(可达75%左右)。图2(a)展示了低阶煤碱氧空气/O2氧化法工艺流程示意图。

      图  2  煤中提取腐植酸的流程示意图

      Figure 2.  Schematic diagram of the process of extracting humic acid from coal

    • HNO3氧化低阶煤的过程既有氧化反应,又有苯环的硝化反应。因此,采用HNO3氧化获得腐植酸中会伴有硝基、亚硝基等基团[14]

      由于HNO3氧化性强,可将腐植酸深度氧化为CO2。因此该工艺需要严格控制HNO3的浓度、液固比、氧化温度和氧化时间,以提高腐植酸的产率[15]。为节约成本,通常是将HNO3循环使用,但随着HNO3的消耗和循环次数增加,所获得的腐植酸性的产率、质会出现衰减,由78.2%降至到6.3%。我国早期已将HNO3氧化煤制取腐植酸应用到工业生产[16],但产生的废气、废水污染环境,因此仍需进一步优化。

      HNO3氧化低阶煤制腐植酸的流程示意图如图2(b)所示。向锥形瓶中加入(80~200目)的煤样和稀硝酸,放入温度50 ℃下、超声频率80 kHz恒温水浴锅氧化90 min,冷却至室温,向不溶物中加入NaOH溶液抽提30 min,冷却至室温过滤出残渣、黑腐酸,取清液加入稀酸,不溶于稀酸的即为硝基腐植酸[17],再测定腐植酸含量[18]

    • H2O2是一种常见的绿色氧化介质,使用过程不产生环境污染,也可用于低阶煤氧化制腐植酸。实验室研究发现,褐煤经H2O2氧化后再提取腐植酸,比不氧化直接提取(约10%),腐植酸的产率提高了33.9%[19]。具体操作流程如图2(c)所示,将经筛分后的原煤加入过氧化氢氧化,经过滤,洗涤等一系列操作得到氧解煤样,然后加入焦磷酸钠放入恒温水浴中氧化一定时间,经过滤,洗涤至中性,向清液中加入稀硫酸,经过滤,洗涤等一系列操作得到腐植酸产品。

      H2O2的氧化性比HNO3氧化性弱,过量的H2O2和较长的氧化时间不会降低腐植酸的产率(图3)。更重要的是,H2O2氧化制腐植酸选择性高、条件温和、无污染,符合绿色环保理念。然而H2O2成本较高,相对于碱试剂和HNO3稳定性差,受热易分解。因此H2O2氧化法在科学研究领域起到重要的引导作用,但现阶段还未在工业生产中得到实践应用。

      图  3  H2O2氧化条件对HA产率的影响[20]

      Figure 3.  Effect of H2O2 oxidation conditions on HA yield

    • 无论是O2氧化、HNO3氧化还是H2O2氧化,均是通过选择性断裂低阶煤中的桥连的—CH2—、—C—O—、—O—等活泼脂肪桥键,生成硝基、羟基等含氧官能团,同时,伴有苯环和缩合芳环的氧化成酚羟基、醌基等,增加腐植酸的含氧官能团,提高了碱性溶解度,进而提高腐植酸的产量[21]

      O2氧化、H2O2通过自由基反来实现低阶煤的氧化[22],而硝酸氧化无需产生自由基。如图4所示,以O2氧化为例,低阶煤中脂肪结构的桥键先形成RH•,吸附氧被过氧化•OOH;然后RH•被氧化形成ROO•与煤中的脂肪氢生成比较稳定的RH-OOH;分解成•OH。O2或者H2O2产生自由基,如•OH、RO•、ROO•并攻击煤中RH—、—O—、—O—O—等活泼化学键,经过提取分离生成腐植酸分子结构,继续氧化会生成棕腐酸、黄腐酸等[23]结构。

      图  4  煤中提取腐植酸的主要步骤

      Figure 4.  The main step in extracting humic acid from coal

    • 低阶煤氧化制腐植酸本质是实现芳香环之间桥连的—CH2—、—C—O—、—O—等活泼化学键的选择性断裂,生成硝基、羟基等含氧官能团。电化学氧化法具有条件温和、反应易于控制、产品纯度高、氧化电位电位连续可调等优点[24]

      煤浆电解早期被发现可降低电解水阳极反应电位,进而可降低电解水制氢能耗,其原理如式(1)~式(2)所示,主要用于降低电解水制氢能耗。当采用煤为原料时,反应阴极和阳极的反应如式(3)~式(4)。

      $$ \begin{split} &\text{电解水总反应:}{{\text{H}}_{2}}\text{O}\to \text{2}{{\text{H}}_{2}}\uparrow +{{\text{O}}_{2}}\uparrow\\ &{{\text{E}}^{0}}\text{=1}\text{.23}\ {{\text{V}}_{\text{RHE}}} \end{split} $$ (1)
      $$ \begin{split} &\text{电解煤浆总反应:{\text{C}}+}{{\text{H}}_{2}}\text{O}\to \text{2}{{\text{H}}_{2}}\uparrow +\text{C}{{\text{O}}_{2}}\uparrow\\ &{{\text{E}}^{0}}\text{=0}\text{.21}\ {{\text{V}}_{\text{RHE}}} \end{split} $$ (2)
      $$ 阴极反应:4{{\text{H}}_{2}}\text{O}+4{{\text{e}}^{-}}\to 4\text{O}{{\text{H}}^{-}}+2{{\text{H}}_{2}}\uparrow $$ (3)
      $$ 阳极反应:\text{Coal+4O}{{\text{H}}^{-}}\text{-4}{{\text{e}}^{-}}\to \text{Coa}{{\text{l}}_{\text{ox}}}、腐植酸等+2{{\text{H}}_{2}}\text{O} $$ (4)
      $$ 总反应:\text{Coal+2}{{\text{H}}_{2}}\text{O}\to \text{Coa}{{\text{l}}_{\text{ox}}}、腐植酸等+2{{\text{H}}_{2}}\uparrow $$ (5)

      上述反应的本质是利用阳极产生的氧化介质(•OH)与低阶煤反应,或者煤颗粒与电极直接碰撞来实现煤的氧化,替代原本的阳极析氧反应。•OH进攻煤大分子结构桥连—CH2—、—C—O—、—O—等活泼化学键,生成硝基、羟基等含氧官能团,产生氧化煤(Coal ox)、腐植酸等氧化产品。

      由于电解过程的氧化介质氧化能力(氧化电位)强,可以将含有10%左右含量腐植酸的油页岩原样氧化,提取出总腐植酸产率可以达到90%[25]。即便是无烟煤、烟煤也能产生相当产率的腐植酸[26-27],这在传统空气/O2、HNO3氧化制腐植酸过程是无法实现的。

      在煤浆电解制氢过程,希望煤炭尽量彻底氧化,以便降低能耗。而对于制取腐植酸过程,则需要实现适度氧化来获得腐植酸(酸性)或腐植酸盐(碱性)。因而,只有强化煤浆电化学氧化,且合适地控制煤浆氧化程度是提高腐植酸产率的根本。围绕这一目标,研究人员针对煤质、电解液、阳极材料和操作参数(电位、浆液浓度等)方面展开了广泛研究。

      煤浆的电化学氧化可用于降低制氢能耗[28]以及煤炭氧化制腐植酸[29]。由于酸性电解液可在一定程度促进煤中矿物质溶解,Fe3+/2+价态循环有利于提高煤浆电解制氢的电流密度,所以在酸性电解液主要用于电解制氢[30]。同样由于Fe3+/2+价态循环导致腐植酸容易过度氧化,酸性电解液电解煤浆制腐植酸收率不高[31](约10%)。由此可见,酸性介质对制取的腐植酸产品还存在很大的提升空间。

      碱性电解液可将腐植酸转化成稳定的腐植酸盐,减少了腐植酸的过度氧化,因而早就有了研究。1986年Lalvani[32]采用三电极体系和恒电位法研究了褐煤在碱性介质中的氧化过程。制取腐植酸的实验流程如图5所示,制取的腐植酸的产率达到70%以上。

      图  5  电化学制取腐植酸的实验流程

      Figure 5.  Experimental process of electrochemical preparation of humic acid

      提高浆液浓度会降低体系的导电性,维持电流密度不变时必须提高阳极电位,从而导致阳极表面产生更多的氧化介质,一方面导致腐植酸过度氧化,另一方面阳极电位提高,析氧反应也更容易发生。

      电极材料也是影响煤浆电解制腐植酸的重要原因,1932年Lynch[33]研究了(Cu、Ni、Pb、Pt)四种阳极电极材料,发现阳极产物中检测有腐植酸、O2、CO2和微量的CO。使用Cu电极的效果最佳,制取腐殖酸的速率较大,可以使反应停留在制腐植酸阶段,使用Pt电极,腐植酸会继续氧化成CO2。采用不同的电极材料和电解条件可以控制煤电解氧化阶段,从而得到期望的产物。

    • 总结传统煤制腐殖酸技术路线和电化学氧化制备腐植酸的特点如表1所示。

      表 1  化学氧化与电化学氧化的对比

      Table 1.  Comparison of chemical oxidation and electrochemical oxidation

      优点缺点总产率参考文献
      直接提取①反应条件温和②符合绿色环保理念①只能提取游离HA(黄腐酸)②产率低约10%[34]
      硝酸氧化①HA产率高②氧化过程快①破坏HA结构,使N元素增多②HNO3污染环境50%~88%[14][17]
      H2O2氧化①符合绿色环保理念②反应条件温和③氧化时间短①成本高②转化率低③H2O2不稳定,易分解40%~65%[20][35]
      碱氧氧化①反应条件温和②HA产率高①碱碳比大②氧化周期长③成本高约80%[35]
      电化学氧化①反应条件温和②反应易于控制③经济环保④煤炭利用率高①能源转化速率慢②没有广泛普及③受反应条件限制70%~95%[25][29]

      HNO3氧化、H2O2氧化、碱氧氧化等氧化法均能大幅度提升腐植酸产率。使用HNO3氧化增大了腐植酸中的N元素,芳香类物质含量降低[36]。H2O2氧化能将煤中的芳香结构氧化、裂解,并未改变腐植酸的芳香性;碱氧氧化存在碱试剂的用量大,成本高的不足。在合适条件下,电化学氧化效果明显强于其他的氧化方法。

    • 随着可再生电力成本的降低,从低价煤中高效提取腐植酸,既可以做到低阶煤综合利用,又可以增加腐植酸行业的繁荣。电化学氧化法可以极大极高腐植酸的提取率,通过利用阳极的氧化作用将煤颗粒氧化,使煤颗粒向腐植酸产物转化,且改变了目前传统氧化法提取腐植酸的过程中结构被破坏、氧化周期长、耗能、环境污染等的问题,是一种比较有前景制备腐植酸的方法。但采用电化学氧化制备腐植酸面临的挑战是电解液和电极材料的选取,以及煤炭颗粒-氧化介质在电解液中的传递,因此仍需加深对低阶煤电化学氧化的理解。

参考文献 (36)

目录

    /

    返回文章
    返回