Advanced Search
WANG Boni, WANG Feng, GE Hangcheng, et al. Analysis of key technologies and applications of meteorological service for offshore wind power [J]. Southern energy construction, 2025, 12(1): 65-74. DOI: 10.16516/j.ceec.2024-126
Citation: WANG Boni, WANG Feng, GE Hangcheng, et al. Analysis of key technologies and applications of meteorological service for offshore wind power [J]. Southern energy construction, 2025, 12(1): 65-74. DOI: 10.16516/j.ceec.2024-126

Analysis of Key Technologies and Applications of Meteorological Service for Offshore Wind Power

More Information
  • Received Date: April 25, 2024
  • Revised Date: June 17, 2024
  • Available Online: November 17, 2024
  •   Objective  Offshore wind power safety is of paramount importance. Meteorological services effectively address forecasting and warning challenges related to high waves, storm surges, severe convection and sea fog that impact wind farm safety, ensuring the secure and efficient operation of offshore wind energy projects.
      Method  This paper took the meteorological services for offshore wind farms in Jiangsu as an example. By utilizing the data assimilation techniques and state-of-the-art artificial intelligence methods, combined with numerical models, it developed key technologies such as wind-wave-current forecasting for offshore wind farms, intelligent forecasting of significant wave height and storm surges, as well as high-impact weather monitoring and forecasting alerts. Ultimately, this led to the refinement of meteorological services and applications for offshore wind farms. The reflections on the empowerment of meteorology in the offshore wind power industry and the enhancement of technological integration across different sectors were presented.
      Result  The results indicate that the spatial and temporal resolution of forecasting elements such as 10 m wind, 100 m wind, and wave height in offshore wind farms has been improved to 1 hour and 3 kilometers. The lead time for forecasting significant wave height and storm surge water level has increased to 72 hours, with an 85% accuracy rate for 6-hour forecasts. The lead time for severe convective warnings has been advanced by 1 hour, and sea fog warnings by half an hour, with a forecast accuracy rate of 92%. The technology has enabled refined meteorological services and applications for multiple working scenarios.
      Conclusion  The application of key technologies in offshore wind farm meteorological services has effectively enhanced the safety production and O & M capabilities of offshore wind power, optimized the power generation efficiency of offshore wind turbine units, reduced the costs and losses of offshore operations, ensured the safety of offshore operations, and minimized losses of life and property. As offshore wind farms continue to evolve, meteorology will increasingly integrate with various disciplines, empowering the development of the entire offshore wind power industry chain.
  • [1]
    ZHOU N, PRICE L, DAI Y D, et al. A roadmap for China to peak carbon dioxide emissions and achieve a 20% share of non-fossil fuels in primary energy by 2030 [J]. Applied energy, 2019, 239: 793-819. DOI: 10.1016/j.apenergy.2019.01.154.
    [2]
    ZHAO X L, CAI Q, ZHANG S F, et al. The substitution of wind power for coal-fired power to realize China's CO2 emissions reduction targets in 2020 and 2030 [J]. Energy, 2017, 120: 164-178. DOI: 10.1016/j.energy.2016.12.109.
    [3]
    辛保安, 单葆国, 李琼慧, 等. “双碳”目标下“能源三要素”再思考 [J]. 中国电机工程学报, 2022, 42(9): 3117-3125. DOI: 10.13334/j.0258-8013.pcsee.212780.

    XIN B A, SHAN B G, LI Q H, et al. Rethinking of the "three elements of energy" toward "carbon peak and carbon neutrality" [J]. Proceedings of the CSEE, 2022, 42(9): 3117-3125. DOI: 10.13334/j.0258-8013.pcsee.212780.
    [4]
    YOLCAN O O. World energy outlook and state of renewable energy: 10-year evaluation [J]. Innovation and green development, 2023, 2(4): 100070. DOI: 10.1016/j.igd.2023.100070.
    [5]
    赵德福, 袁家海, 张健, 等. 多层次视角下颠覆性技术驱动的中国能源电力转型路径 [J]. 电力建设, 2024, 45(8): 1-10. DOI: 10.12204/j.issn.1000-7229.2024.08.001.

    ZHAO D F, YUAN J H, ZHANG J, et al. China's energy and power system transition pathways driven by disruptive technologies: a multilevel perspective [J]. Electric power construction, 2024, 45(8): 1-10. DOI: 10.12204/j.issn.1000-7229.2024.08.001.
    [6]
    许洪华, 邵桂萍, 鄂春良, 等. 我国未来能源系统及能源转型现实路径研究 [J]. 发电技术, 2023, 44(4): 484-491. DOI: 10.12096/j.2096-4528.pgt.23002.

    XU H H, SHAO G P, E C L, et al. Research on China's future energy system and the realistic path of energy transformation [J]. Power generation technology, 2023, 44(4): 484-491. DOI: 10.12096/j.2096-4528.pgt.23002.
    [7]
    严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述 [J]. 发电技术, 2024, 45(1): 1-12. DOI: 10.12096/j.2096-4528.pgt.23093.

    YAN X R, ZHANG N N, MA K C, et al. Overview of current situation and trend of offshore wind power development in China [J]. Power generation technology, 2024, 45(1): 1-12. DOI: 10.12096/j.2096-4528.pgt.23093.
    [8]
    迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述 [J]. 中国电机工程学报, 2016, 36(14): 3758-3770. DOI: 10.13334/j.0258-8013.pcsee.152756.

    CHI Y N, LIANG W, ZHANG Z K, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power [J]. Proceedings of the CSEE, 2016, 36(14): 3758-3770. DOI: 10.13334/j.0258-8013.pcsee.152756.
    [9]
    葛珊珊, 张韧. 全球气候变化背景下灾害性天气变化及对海上风电的影响 [J]. 中国工程科学, 2010, 12(11): 71-77. DOI: 10.3969/j.issn.1009-1742.2010.11.013.

    GE S S, ZHANG R. Disastrous weather trend under global climate change and its influence on offshore wind power [J]. Strategic study of CAE, 2010, 12(11): 71-77. DOI: 10.3969/j.issn.1009-1742.2010.11.013.
    [10]
    WANG Q L, ZHOU C H, ZHANG H Y, et al. Offshore wind power prediction method considering typhoon, cold wave and other meteorological features under transitory weather [J]. Procedia computer science, 2023, 224: 377-382. DOI: 10.1016/j.procs.2023.09.051.
    [11]
    YANG Z H, LIN Y F, DONG S. Weather window and efficiency assessment of offshore wind power construction in China adjacent seas using the calibrated SWAN model [J]. Ocean engineering, 2022, 259: 111933. DOI: 10.1016/j.oceaneng.2022.111933.
    [12]
    卢睿, 熊小伏, 陈红州. 考虑台风时空特性的海上风电场群协同紧急防御策略 [J]. 电力系统保护与控制, 2024, 52(12): 13-24. DOI: 10.19783/j.cnki.pspc.231428.

    LU R, XIONG X F, CHEN H Z. Collaborative emergency defense strategy for offshore wind farm clusters considering thespatial-temporal characteristics of a typhoon [J]. Power system protection and control, 2024, 52(12): 13-24. DOI: 10.19783/j.cnki.pspc.231428.
    [13]
    宋明阳, 瞿晟珉, 秦少茜, 等. 基于故障风险水平的海上风电场机会维护策略 [J]. 电力工程技术, 2023, 42(6): 117-129. DOI: 10.12158/j.2096-3203.2023.06.013.

    SONG M Y, QU S M, QIN S X, et al. Offshore wind farm opportunity maintenance strategy based on failure risk level [J]. Electric power engineering technology, 2023, 42(6): 117-129. DOI: 10.12158/j.2096-3203.2023.06.013.
    [14]
    杨源, 阳熹, 汪少勇, 等. 海上风电场智能船舶调度及人员管理系统 [J]. 南方能源建设, 2020, 7(1): 47-52. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.007.

    YANG Y, YANG X, WANG S Y, et al. Scheme design of intelligent vessel dispatching and personnel management system for offshore wind farm [J]. Southern energy construction, 2020, 7(1): 47-52. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.007.
    [15]
    杨源, 汪少勇, 谭江平, 等. 海上风电场智慧运维管理系统 [J]. 南方能源建设, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011.

    YANG Y, WANG S Y, TAN J P, et al. The intelligent operation and maintenance management system for offshore wind farms [J]. Southern energy construction, 2021, 8(1): 74-79. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.011.
    [16]
    董昌明, LIM KAM SIAN K T C, 蒋星亮, 等. 一个中国边缘海的风-浪-流预报系统 [J]. 海洋科学进展, 2022, 40(4): 660-683. DOI: 10.12362/j.issn.1671-6647.20220703001.

    DONG C M, LIM KAM SIAN K T C, JIANG X L, et al. A wind-wave-current forecast system for China's marginal seas [J]. Advances in marine science, 2022, 40(4): 660-683. DOI: 10.12362/j.issn.1671-6647.20220703001.
    [17]
    王博妮, 黄亮, 董昌明, 等. 海上风电高影响天气预报预警服务关键技术与示范应用 [J]. 科技成果管理与研究, 2023, 18(4): 66-67. DOI: 10.3772/j.issn.1673-6516.2023.04.021.

    WANG B N, HUANG L, DONG C M, et al. Key technologies and demonstration applications of offshore wind power high-impact weather forecasting and early warning services [J]. Management and research on scientific & technological achievements, 2023, 18(4): 66-67. DOI: 10.3772/j.issn.1673-6516.2023.04.021.
    [18]
    李近元, 王宇, 曹淑刚, 等. 海流海浪耦合作用对台风浪影响的数值研究 [J]. 海洋科学进展, 2023, 41(3): 456-465. DOI: 10.12362/j.issn.1671-6647.20210902001.

    LI J Y, WANG Y, CAO S G, et al. Numerical study on the influence of ocean current wave coupling on typhoon waves [J]. Advances in marine science, 2023, 41(3): 456-465. DOI: 10.12362/j.issn.1671-6647.20210902001.
    [19]
    崔冬林, 沙伟, 刘树洁, 等. 海上相邻风电场间的“尾流效应”实例分析 [J]. 南方能源建设, 2023, 10(1): 21-28. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.003.

    CUI D L, SHA W, LIU S J, et al. Case study of "wake effect" of adjacent offshore wind farms [J]. Southern energy construction, 2023, 10(1): 21-28. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.003.
    [20]
    蔡彦枫, 李晓宇. 面向空中风力发电系统的高空风场观测 [J]. 南方能源建设, 2024, 11(1): 1-9. DOI: 10.16516/j.ceec.2024.1.01.

    CAI Y F, LI X Y. High-altitude wind field observation of airborne wind energy system [J]. Southern energy construction, 2024, 11(1): 1-9. DOI: 10.16516/j.ceec.2024.1.01.
    [21]
    王明, 孟丹, 许沛华, 等. 中国气象局风能太阳能预报系统(CMA-WSP)在风资源短期预报中的检验评估 [J]. 南方能源建设, 2024, 11(1): 73-84. DOI: 10.16516/j.ceec.2024.1.08.

    WANG M, MENG D, XU P H, et al. Validation and evaluation of the China meteorological administration wind energy and solar energy forecasting system (CMA-WSP) in short-term wind resource forecasting [J]. Southern energy construction, 2024, 11(1): 73-84. DOI: 10.16516/j.ceec.2024.1.08.
    [22]
    徐瑾, 曹玉晗, 杨永增, 等. 2016年苏北近海风场和波浪场多时间尺度变化的数值模拟研究 [J]. 海洋科学进展, 2020, 38(4): 600-623. DOI: 10.3969/j.issn.1671-6647.2020.04.006.

    XU J, CAO Y H, YANG Y Z, et al. Numerical simulation of multi-scale temporal variations of sea surface wind and wave field in the offshore area of the northern Jiangsu Province in 2016 [J]. Advances in marine science, 2020, 38(4): 600-623. DOI: 10.3969/j.issn.1671-6647.2020.04.006.
    [23]
    郭乔影. 基于星地多源数据的海上风能资源评估方法研究 [D]. 杭州: 浙江大学, 2020. DOI: 10.27461/d.cnki.gzjdx.2020.001831.

    GUO Q Y. Assessing ocean wind energy resources integrated multiple satellite and ground-based data [D]. Hangzhou: Zhejiang University, 2020. DOI: 10.27461/d.cnki.gzjdx.2020.001831.
    [24]
    张双益, 胡非, 王益群, 等. 利用CFSR数据开展海上风电场长年代风能资源评估 [J]. 长江流域资源与环境, 2017, 26(11): 1795-1804. DOI: 10.11870/cjlyzyyhj201711008.

    ZHANG S Y, HU F, WANG Y Q, et al. Application of CFSR data to offshore wind farms' long term wind energy resource assessment [J]. Resources and environment in the Yangtze Basin, 2017, 26(11): 1795-1804. DOI: 10.11870/cjlyzyyhj201711008.
    [25]
    刘东海, 宋丽莉, 李国平, 等. 强台风“黑格比”实测海上风电机组极端风况特征参数分析和讨论 [J]. 热带气象学报, 2011, 27(3): 317-326. DOI: 10.3969/j.issn.1004-4965.2011.03.004.

    LIU D H, SONG L L, LI G P, et al. Analysis of the extreme loads on offshore wind turbines by strong typhoon "Hagupit" [J]. Journal of tropical meteorology, 2011, 27(3): 317-326. DOI: 10.3969/j.issn.1004-4965.2011.03.004.
    [26]
    吴萌萌, 王毅, 万莉颖, 等. WAVEWATCH III模式在全球海域的数值模拟试验及结果分析 [J]. 海洋预报, 2016, 33(5): 31-40. DOI: 10.11737/j.issn.1003-0239.2016.05.004.

    WU M M, WANG Y, WAN L Y, et al. Numerical simulation experiments and analysis using WAVEWATCH III in the global ocean [J]. Marine forecasts, 2016, 33(5): 31-40. DOI: 10.11737/j.issn.1003-0239.2016.05.004.
  • Related Articles

    [1]YANG Wei, QIN Chuan, ZENG Yulin, WU Jing, LI Xianghong. Analysis of the Impact of Low Temperature and Freezing Weather in Northern Guangxi on High-Altitude Wind Power Generation[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-124
    [2]AN Jieru, ZUO Jiaxu, HUANG Xuyang, SONG Wei. Development Trends of Nuclear Fusion Energy Technology and Its Industrial Chain[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-427
    [3]HUANG Bin, ZHAO Wei, LIAO Lida, XIAO Meng, HUANG Jialiang, XIE Peiling. Analysis on Regional Difference of the Whole PV Industry Chain from the Perspective of Policy[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 179-188. DOI: 10.16516/j.ceec.2024.2.18
    [4]ZHANG Mingzhen, ZHANG Can, WU Xiushan, CHENG Qian. Analysis of the Impact of Water Resources on China's Green Hydrogen Industry[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 172-178. DOI: 10.16516/j.ceec.2024.2.17
    [5]Ruojun YAO, Xiaotian GAO. Current Situation and Prospect of Hydrogen Energy Industry Chain and Hydrogen Power Generation Utilization Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 9-15. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.002
    [6]Xuanxu HUANG, Jijian LIAN, Wei SHEN, Chao MA. Economic Analysis of China's Large-scale Hydrogen Energy Supply Chain[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 1-13. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.001
    [7]Haiji WANG. Competitive Advantage Analysis of Power Grid Enterprise on the Industrial Chain of Electric Vehicle Charging Infrastructure[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(2): 27-31. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.005
    [8]Mingliang HUANG. Optimization of Scheduling in Power Generation Engineering Projects Based on Critical Chain[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 70-75. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.015
    [9]Ji QUAN, Jianmei HUANG, Shuibo ZHANG, Xiangyu ZENG. Method of Risk Qualitative Assessment Based on Risk Chain and Fuzzy Influence Diagrams —A Case Study of an Overseas EPC Electric Power Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 63-69. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.014
    [10]Ji QUAN, Jianmei HUANG, Shuibo ZHANG, Xiangyu ZENG. Method of Risk Identification and Analysis Based on Risk Chain and Maps: A Case Study of an Overseas EPC Electric Power Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 92-96. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.017
  • Cited by

    Periodical cited type(1)

    1. 杨源. 海上风电场智能维检平台方案设计. 南方能源建设. 2025(02): 97-103 . 本站查看

    Other cited types(0)

Catalog

    ZHANG Min, z857188112@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (516) PDF downloads (65) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return