[1] 工业互联网产业联盟. 工业互联网碳达峰碳中和园区指南(2021) [R/OL]. (2021-12) [2023-11-15]. https://aii-alliance.org/uploads/1/20211230/e2cb0bfc10df274a064c959dd49489c6.pdf.

Alliance of Industrial Internet. Guidelines for industrial internet carbon peak and carbon neutrality parks (2021) [R/OL]. (2021-12) [2023-11-15]. https://aii-alliance.org/uploads/1/20211230/e2cb0bfc10df274a064c959dd49489c6.pdf.
[2] 严坤, 吕一铮, 郭扬, 等. 工业园区温室气体核算方法研究 [J]. 中国环境管理, 2021, 13(6): 13-23. DOI:  10.16868/j.cnki.1674-6252.2021.06.013.

YAN K, LÜ Y Z, GUO Y, et al. Review on greenhouse gas accounting methods on China's industrial parks [J]. Chinese journal of environmental management, 2021, 13(6): 13-23. DOI:  10.16868/j.cnki.1674-6252.2021.06.013.
[3]

ZHANG M, WANG C, WANG S S, et al. Assessment of greenhouse gas emissions reduction potential in an industrial park in China [J]. Clean technologies and environmental policy, 2020, 22(7): 1435-1448. DOI:  10.1007/s10098-020-01864-5.
[4] 陈彬, 杨维思. 产业园区碳排放核算方法研究 [J]. 中国人口·资源与环境, 2017, 27(3): 1-10. DOI:  10.3969/j.issn.1002-2104.2017.03.001.

CHEN B, YANG W S. Carbon emission accounting methods for industrial parks [J]. China population, resources and environment, 2017, 27(3): 1-10. DOI:  10.3969/j.issn.1002-2104.2017.03.001.
[5]

SUH S, LENZEN M, TRELOAR G J, et al. System boundary selection in life-cycle inventories using hybrid approaches [J]. Environmental science & technology, 2004, 38(3): 657-664. DOI:  10.1021/es0263745.
[6]

DONG H J, GENG Y, XI F M, et al. Carbon footprint evaluation at industrial park level: a hybrid life cycle assessment approach [J]. Energy policy, 2013, 57: 298-307. DOI:  10.1016/j.enpol.2013.01.057.
[7] 康重庆, 杜尔顺, 李姚旺, 等. 新型电力系统的“碳视角”: 科学问题与研究框架 [J]. 电网技术, 2022, 46(3): 821-833. DOI:  10.13335/j.1000-3673.pst.2021.2550.

KANG C Q, DU E S, LI Y W, et al. Key scientific problems and research framework for carbon perspective research of new power systems [J]. Power system technology, 2022, 46(3): 821-833. DOI:  10.13335/j.1000-3673.pst.2021.2550.
[8]

ANG B W. LMDI decomposition approach: a guide for implementation [J]. Energy policy, 2015, 86: 233-238. DOI:  10.1016/j.enpol.2015.07.007.
[9] 杜涵蓓, 赵立君, 刘臣炜, 等. 基于LEAP模型和KAYA模型的主城区碳达峰预测及不确定性分析 [J]. 生态与农村环境学报, 2022, 38(8): 983-991. DOI:  10.19741/j.issn.1673-4831.2022.0205.

DU H B, ZHAO L J, LIU C W, et al. Prediction of peaking carbon dioxide emissions in main city areas based on LEAP model and KAYA model and analyses on its uncertainty [J]. Journal of ecology and rural environment, 2022, 38(8): 983-991. DOI:  10.19741/j.issn.1673-4831.2022.0205.
[10] 朱宇恩, 李丽芬, 贺思思, 等. 基于IPAT模型和情景分析法的山西省碳排放峰值年预测 [J]. 资源科学, 2016, 38(12): 2316-2325. DOI:  10.18402/resci.2016.12.11.

ZHU Y E, LI L F, HE S S, et al. Peak year prediction of Shanxi province's carbon emissions based on IPAT modeling and scenario analysis [J]. Resources science, 2016, 38(12): 2316-2325. DOI:  10.18402/resci.2016.12.11.
[11]

LUO Y L, ZENG W L, HU X B, et al. Coupling the driving forces of urban CO2 emission in Shanghai with logarithmic mean Divisia index method and Granger causality inference [J]. Journal of cleaner production, 2021, 298: 126843. DOI:  10.1016/j.jclepro.2021.126843.
[12]

HEAPS C, KUYLENSTIERNA J C I, HICKS K, et al. The long-range energy alternatives planning-integrated benefits calculator (LEAP-IBC) [R]. Sweden: Stockholm Environment Institute (SEI), 2017.
[13] 张玲, 袁增伟, 毕军. 物质流分析方法及其研究进展 [J]. 生态学报, 2009, 29(11): 6189-6198. DOI:  10.3321/j.issn:1000-0933.2009.11.054.

ZHANG L, YUAN Z W, BI J. Substance flow analysis (SFA): a critical review [J]. Acta ecologica sinica, 2009, 29(11): 6189-6198. DOI:  10.3321/j.issn:1000-0933.2009.11.054.
[14]

HAO J H, GAO F, FANG X Y, et al. Multi-factor decomposition and multi-scenario prediction decoupling analysis of China's carbon emission under dual carbon goal [J]. Science of the total environment, 2022, 841: 156788. DOI:  10.1016/j.scitotenv.2022.156788.
[15]

LIU J P, ZHANG X B, SONG X H. Regional carbon emission evolution mechanism and its prediction approach driven by carbon trading – a case study of Beijing [J]. Journal of cleaner production, 2018, 172: 2793-2810. DOI:  10.1016/j.jclepro.2017.11.133.
[16] 曹斌, 林剑艺, 崔胜辉, 等. 基于LEAP的厦门市节能与温室气体减排潜力情景分析 [J]. 生态学报, 2010, 30(12): 3358-3367.

CAO B, LIN J Y, CUI S H, et al. Scenario analysis of reduction potentials of energy demand and GHG emissions based on LEAP model in Xiamen city [J]. Acta ecologica sinica, 2010, 30(12): 3358-3367.
[17] 朱永彬, 王铮, 庞丽, 等. 基于经济模拟的中国能源消费与碳排放高峰预测 [J]. 地理学报, 2009, 64(8): 935-944. DOI:  10.3321/j.issn:0375-5444.2009.08.004.

ZHU Y B, WANG Z, PANG L, et al. Simulation on China's economy and prediction on energy consumption and carbon emission under optimal growth path [J]. Acta geographica sinica, 2009, 64(8): 935-944. DOI:  10.3321/j.issn:0375-5444.2009.08.004.
[18] 赵玉焕, 钱之凌, 徐鑫. 碳达峰和碳中和背景下中国产业结构升级对碳排放的影响研究 [J]. 经济问题探索, 2022(3): 87-105.

ZHAO Y H, QIAN Z L, XU X. Study on the impact of industrial structure upgrading on carbon emissions in China in the context of carbon peaking and carbon neutrality [J]. Inquiry into economic issues, 2022(3): 87-105.
[19]

HE C Y, HUANG G H, LIU L R, et al. A multi-perspective factorial hypothetical simulation model for cutting the carbon emission intensity of China [J]. Journal of cleaner production, 2020, 275: 123943. DOI:  10.1016/j.jclepro.2020.123943.
[20] 李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.

LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI:  10.16516/j.gedi.issn2095-8676.2022.04.015.