Advanced Search
YAN Xiaoshan, TANG Huiling, WU Jiekang, et al. Optimization strategy for collaborative frequency modulation of pvs-ess based on MPC [J]. Southern energy construction, 2024, 11(2): 125-138. DOI: 10.16516/j.ceec.2024.2.12
Citation: YAN Xiaoshan, TANG Huiling, WU Jiekang, et al. Optimization strategy for collaborative frequency modulation of pvs-ess based on MPC [J]. Southern energy construction, 2024, 11(2): 125-138. DOI: 10.16516/j.ceec.2024.2.12

Optimization Strategy for Collaborative Frequency Modulation of PVs-ESs Based on MPC

More Information
  • Received Date: October 16, 2023
  • Revised Date: November 13, 2023
  • Available Online: March 24, 2024
  •   Introduction  In order to reduce frequency disturbance caused by photovoltaic (PV) generation to power grid and further improve the frequency modulation effect, an optimization strategy for collaborative frequency modulation of PVs-ESs based on MPC (Model Predictive Control) is proposed. The basic principles, control flow, constraints, target function and weight coefficient of the strategy are analyzed.
      Method  A model of optical-storage network based on MPC was constructed and the nonlinear state space equation was derived. In order to verify the frequency modulation effect of this strategy, four different simulation environments were set up: no energy storage, battery storage, mixed energy storage and the strategy proposed in this paper.
      Result  Simulation results show that compared with other scenarios, the proposed strategy is optimal in terms of frequency modulation and the worst in the absence of energy storage. In addition, the hybrid energy storage method is superior to the battery energy storage method.
      Conclusion  The effectiveness of the proposed strategy is validated on the MATLLAB/Simulink platform. In photovoltaic power generation system, optimal control of energy storage and PV maximum power point tracking can make the grid frequency more stable and improve the stability of the whole system. The results of this study can be used as a reference for PV connection.
  • [1]
    HUANG Q L. Insights for global energy interconnection from China renewable energy development [J]. Global energy interconnection, 2020, 3(1): 1-11. DOI: 10.1016/j.gloei.2020.03.006.
    [2]
    王中, 黎丽丽, 李振华, 等. 考虑新能源渗透的电网频率概率分布研究 [J]. 电力系统保护与控制, 2021, 49(20): 65-73. DOI: 10.19783/j.cnki.pspc.201654.

    WANG Z, LI L L, LI Z H, et al. The evolution characteristics of power grid frequency probability distribution [J]. Power system protection and control, 2021, 49(20): 65-73. DOI: 10.19783/j.cnki.pspc.201654.
    [3]
    YE H R, AO B, BAI S, et al. Design of a fast frequency modulation control system based on photovoltaic power station [C]//2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi'an, China, October 15-17, 2021. Xi'an: IEEE, 2021: 148-152. DOI: 10.1109/ITNEC52019.2021.9587286.
    [4]
    张金平, 汪宁渤, 黄蓉, 等. 高渗透率光伏参与电力系统调频研究综述 [J]. 电力系统保护与控制, 2019, 47(15): 179-186. DOI: 10.19783/j.cnki.pspc.181042.

    ZHANG J P, WANG N B, HUANG R, et al. Survey on frequency regulation technology of power grid by high-penetration photovoltaic [J]. Power system protection and control, 2019, 47(15): 179-186. DOI: 10.19783/j.cnki.pspc.181042.
    [5]
    JOHNSON J, SCHENKMAN B, ELLIS A, et al. Initial operating experience of the 1.2-MW La Ola photovoltaic system [C]//IEEE 38th Photovoltaic Specialists Conference (PVSC), Austin, TX, USA, June 3-8, 2012. Austin: IEEE, 2012: 1-6. DOI: 10.1109/PVSC-Vol2.2012.6656701.
    [6]
    严干贵, 张善峰, 贾祺, 等. 光伏发电主动参与电网频率调节的机理分析 [J]. 太阳能学报, 2021, 42(8): 191-199. DOI: 10.19912/j.0254-0096.tynxb.2019-0739.

    YAN G G, ZHANG S F, JIA Q, et al. Mechanism analysis of PV generation actively participating in power grid frequency regulation [J]. Acta energiae solaris sinica, 2021, 42(8): 191-199. DOI: 10.19912/j.0254-0096.tynxb.2019-0739.
    [7]
    左冲, 贾彦, 孟克其劳, 等. 基于HOMER仿真的风光储互补发电系统容量优化配置研究 [J]. 内蒙古电力技术, 2023, 41(1): 21-25. DOI: 10.19929/j.cnki.nmgdljs.2023.0004.

    ZUO C, JIA Y, MENG K Q L, et al. Research on optimized capacity allocation of wind-solar-storage complementary power generation system based on HOMER simulation [J]. Inner Mongolia electric power, 2023, 41(1): 21-25. DOI: 10.19929/j.cnki.nmgdljs.2023.0004.
    [8]
    吴启帆, 宋新立, 张静冉, 等. 电池储能参与电网一次调频的自适应综合控制策略研究 [J]. 电网技术, 2020, 44(10): 3829-3836. DOI: 10.13335/j.1000-3673.pst.2019.1214.

    WU Q F, SONG X L, ZHANG J R, et al. Study on self-adaptation comprehensive strategy of battery energy storage in primary frequency regulation of power grid [J]. Power system technology, 2020, 44(10): 3829-3836. DOI: 10.13335/j.1000-3673.pst.2019.1214.
    [9]
    李欣然, 崔曦文, 黄际元, 等. 电池储能电源参与电网一次调频的自适应控制策略 [J]. 电工技术学报, 2019, 34(18): 3897-3908. DOI: 10.19595/j.cnki.1000-6753.tces.181061.

    LI X R, CUI X W, HUANG J Y, et al. The self-adaption control strategy of energy storage batteries participating in the primary frequency regulation [J]. Transactions of China electrotechnical society, 2019, 34(18): 3897-3908. DOI: 10.19595/j.cnki.1000-6753.tces.181061.
    [10]
    张舒鹏, 董树锋, 徐成司, 等. 大规模储能参与电网调频的双层控制策略 [J]. 电力系统自动化, 2020, 44(19): 55-62. DOI: 10.7500/AEPS20200312007.

    ZHANG S P, DONG S F, XU C S, et al. Bi-level control strategy for power grid frequency regulation with participation of large-scale energy storage [J]. Automation of electric power systems, 2020, 44(19): 55-62. DOI: 10.7500/AEPS20200312007.
    [11]
    李秀慧, 崔炎. 考虑调峰调频需求的新能源电网储能优化配置 [J]. 储能科学与技术, 2022, 11(11): 3594-3602. DOI: 10.19799/j.cnki.2095-4239.2022.0331.

    LI X H, CUI Y. Optimal allocation of energy storage in renewable energy grid considering the demand of peak and frequency regulation [J]. Energy storage science and technology, 2022, 11(11): 3594-3602. DOI: 10.19799/j.cnki.2095-4239.2022.0331.
    [12]
    MADALA S, DOCKHORN J, HYDE M, et al. Analysis of battery energy storage with distribution electric grid connected solar projects [C]//2022 IEEE Rural Electric Power Conference (REPC), Savannah, GA, USA, April 5-8, 2022. Savannah: IEEE, 2022: 43-53. DOI: 10.1109/REPEC55671.2022.00016.
    [13]
    JAWAD A, NAIM S A, SAHA C, et al. Frequency stability enhancement of a large-scale PV integrated grid [C]//2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, December 17-19, 2020. Dhaka: IEEE, 2020: 290-293. DOI: 10.1109/ICECE51571.2020.9393073.
    [14]
    丁明, 施建雄, 韩平平, 等. 光储系统参与电网调频及调峰的综合控制策略 [J]. 中国电力, 2021, 54(1): 116-123,174. DOI: 10.11930/j.issn.1004-9649.201907198.

    DING M, SHI J X, HAN P P, et al. An integrated control strategy for photovoltaic-energy storage system participating in frequency regulation and peak shaving of power grid [J]. Electric power, 2021, 54(1): 116-123,174. DOI: 10.11930/j.issn.1004-9649.201907198.
    [15]
    刘英培, 田仕杰, 梁海平, 等. 考虑SOC的电池储能系统一次调频策略研究 [J]. 电力系统保护与控制, 2022, 50(13): 107-118. DOI: 10.19783/j.cnki.pspc.211530.

    LIU Y P, TIAN S J, LIANG H P, et al. Control strategy of a battery energy storage system considering SOC in primary frequency regulation of power grid [J]. Power system protection and control, 2022, 50(13): 107-118. DOI: 10.19783/j.cnki.pspc.211530.
    [16]
    DATTA U, KALAM A, SHI J. Battery energy storage system control for mitigating PV penetration impact on primary frequency control and state-of-charge recovery [J]. IEEE transactions on sustainable energy, 2020, 11(2): 746-757. DOI: 10.1109/TSTE.2019.2904722.
    [17]
    XU X C, CHEN J, CAI K L, et al. Energy storage allocation and control strategy for fast frequency regulation of regional grid with high-penetration renewable energy [C]//2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Chengdu, China, July 18-21, 2021. Chengdu: IEEE, 2021: 1365-1369. DOI: 10.1109/ICPSAsia52756.2021.9621412.
    [18]
    WANG X Z, LIN C Q, SHEN C L, et al. Control strategy for fast frequency modulation of regional power grid with energy storage system [C]//2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, November 9-13, 2020. Kristiansand: IEEE, 2020: 1226-1230. DOI: 10.1109/ICIEA48937.2020.9248109.
    [19]
    KAZME H Z, BASUMATARY K. Frequency control support in low inertia power grid by energy storage systems: a techno-economic analysis [C]//2022 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, December 14-17, 2022. Jaipur: IEEE, 2022: 1-6. DOI: 10.1109/PEDES56012.2022.10080035.
    [20]
    KÁDÁR P. Role of the battery storage in the operation of the power system [C]//2019 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, November 20-21, 2019. Budapest: IEEE, 2019: 115-120. DOI: 10.1109/CANDO-EPE47959.2019.9110951.
    [21]
    ŞAHIN M E, BLAABJERG F. A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/Simulink [J]. Electronics, 2020, 9(1): 129. DOI: 10.3390/electronics9010129.
    [22]
    HAJIAGHASI S, SALEMNIA A, HAMZEH M. Hybrid energy storage system for microgrids applications: a review [J]. Journal of energy storage, 2019, 21: 543-570. DOI: 10.1016/j.est.2018.12.017.
    [23]
    XU Q W, VAFAMAND N, CHEN L L, et al. Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids [J]. IEEE journal of emerging and selected topics in power electronics, 2021, 9(2): 1205-1221. DOI: 10.1109/JESTPE.2020.2978064.
    [24]
    TUMMURU N R, MANANDHAR U, UKIL A, et al. Control strategy for AC-DC microgrid with hybrid energy storage under different operating modes [J]. International journal of electrical power & energy systems, 2019, 104: 807-816. DOI: 10.1016/j.ijepes.2018.07.063.
    [25]
    AKRAM U, KHALID M, SHAFIQ S. An innovative hybrid wind-solar and battery-supercapacitor microgrid system—development and optimization [J]. IEEE access, 2017, 5: 25897-25912. DOI: 10.1109/ACCESS.2017.2767618.
    [26]
    BAHLOUL M, KHADEM S K. An analytical approach for techno-economic evaluation of hybrid energy storage system for grid services [J]. Journal of energy storage, 2020, 31: 101662. DOI: 10.1016/j.est.2020.101662.
    [27]
    CHONG L W, WONG Y W, RAJKUMAR R K, et al. An adaptive learning control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system [J]. Journal of power sources, 2018, 394: 35-49. DOI: 10.1016/j.jpowsour.2018.05.041.
    [28]
    郭强, 陈崇德, 胡阳, 等. 飞轮和锂电池储能联合光伏发电一次调频控制 [J]. 电力系统及其自动化学报, 2023, 35(11): 1-9. DOI: 10.19635/j.cnki.csu-epsa.001208.

    GUO Q, CHEN C D, HU Y, et al. Flywheel and lithium battery energy storage combined with photovoltaic power generation participate in primary frequency regulation control [J]. Proceedings of the CSU-EPSA, 2023, 35(11): 1-9. DOI: 10.19635/j.cnki.csu-epsa.001208.
    [29]
    WANG H X, YANG J Y, CHEN Z, et al. Model predictive control of PMSG-based wind turbines for frequency regulation in an isolated grid [J]. IEEE transactions on industry applications, 2018, 54(4): 3077-3089. DOI: 10.1109/TIA.2018.2817619.
    [30]
    张颖, 季宇, 唐云峰. 基于MPC含分布式光伏配电网有功功率-无功功率协调控制 [J]. 电力系统自动化, 2017, 41(21): 140-146. DOI: 10.7500/AEPS20161226001.

    ZHANG Y, JI Y, TANG Y F. Coordinated control of active and reactive power for distribution network with distributed photovoltaic based on model predictive control [J]. Automation of electric power systems, 2017, 41(21): 140-146. DOI: 10.7500/AEPS20161226001.
    [31]
    董天翔, 翟保豫, 李星, 等. 风储联合系统参与频率响应的优化控制策略 [J]. 电网技术, 2022, 46(10): 3980-3989. DOI: 10.13335/j.1000-3673.pst.2021.1520.

    DONG T X, ZHAI B Y, LI X, et al. Optimal control strategy for combined wind-storage system to participate in frequency response [J]. Power system technology, 2022, 46(10): 3980-3989. DOI: 10.13335/j.1000-3673.pst.2021.1520.
    [32]
    虞临波, 寇鹏, 冯玉涛, 等. 风储联合发电系统参与频率响应的模型预测控制策略 [J]. 电力系统自动化, 2019, 43(12): 36-43. DOI: 10.7500/AEPS20180923001.

    YU L B, KOU P, FENG Y T, et al. Model predictive control strategy for combined wind-storage system to participate in frequency response [J]. Automation of electric power systems, 2019, 43(12): 36-43. DOI: 10.7500/AEPS20180923001.
    [33]
    赵晶晶, 张宇, 杜明, 等. 基于模型预测控制的新型电力系统光储电站调频控制策略 [J]. 电力建设, 2022, 43(11): 99-107. DOI: 10.12204/j.issn.1000-7229.2022.11.010.

    ZHAO J J, ZHANG Y, DU M, et al. Frequency regulation control strategy based on model predictive control for combined PV and energy storage power station in new power system [J]. Electric power construction, 2022, 43(11): 99-107. DOI: 10.12204/j.issn.1000-7229.2022.11.010.
    [34]
    ZHANG F, FU A H, DING L, et al. MPC based control strategy for battery energy storage station in a grid with high photovoltaic power penetration [J]. International journal of electrical power & energy systems, 2020, 115: 105448. DOI: 10.1016/j.ijepes.2019.105448.
    [35]
    PARISIO A, RIKOS E, GLIELMO L. A model predictive control approach to microgrid operation optimization [J]. IEEE transactions on control systems technology, 2014, 22(5): 1813-1827. DOI: 10.1109/TCST.2013.2295737.
    [36]
    HREDZAK B, AGELIDIS V G, JANG M. A model predictive control system for a hybrid battery-ultracapacitor power source [J]. IEEE transactions on power electronics, 2014, 29(3): 1469-1479. DOI: 10.1109/TPEL.2013.2262003.
    [37]
    IKAOUASSEN H, MOUTAKI K, RADDAOUI A, et al. Modified predictive model control based MPPT for standalone PV in distribution system [C]//2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, December 5-8, 2018. Rabat: IEEE, 2018: 1-6. DOI: 10.1109/IRSEC.2018.8702988.
    [38]
    靳肖林, 文尚胜, 倪浩智, 等. 光伏发电系统最大功率点跟踪技术综述 [J]. 电源技术, 2019, 43(3): 532-535. DOI: 10.3969/j.issn.1002-087X.2019.03.052.

    JIN X L, WEN S S, NI H Z, et al. Review of maximum power point tracking of photovoltaic system [J]. Chinese journal of power sources, 2019, 43(3): 532-535. DOI: 10.3969/j.issn.1002-087X.2019.03.052.
    [39]
    BATIYAH S, ZOHRABI N, ABDELWAHED S, et al. An MPC-based power management of a PV/battery system in an islanded DC microgrid [C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, USA, June 13-15, 2018. Long Beach: IEEE, 2018: 231-236. DOI: 10.1109/ITEC.2018.8450155.
    [40]
    BATIYAH S, SHARMA R, ABDELWAHED S, et al. Predictive control of PV/battery system under load and environmental uncertainty [J]. Energies, 2022, 15(11): 4100. DOI: 10.3390/en15114100.
    [41]
    WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems [J]. Renewable and sustainable energy reviews, 2020, 131: 110015. DOI: 10.1016/j.rser.2020.110015.
  • Related Articles

    [1]CAO Chen, WANG Zengping. Reflections on the Impact of Extreme Weather on New Power Systems and Countermeasures[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 43-57. DOI: 10.16516/j.ceec.2024-367
    [2]QIAO Jibin, FAN Xinye, LIU Jian, LIU Dong. The Low Carbon Dispatch Technology for New Power Systems Based on Electricity Carbon Collaborative Control[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-391
    [3]LIU Shuwei, YANG Hechen, YU Xia, SHU Bin, WU Qirong. Application and Prospect of AI Technology in Power System Development[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 149-158. DOI: 10.16516/j.ceec.2024.5.16
    [4]ZHANG Dongqing, ZHANG Guohua, XU Lingling, GAO Shengfu. Development Application and Dynamic Characteristics of Synchronous Condenser in Electric Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 31-41. DOI: 10.16516/j.ceec.2024.4.04
    [5]CHEN Zhu, XIE Yinzhe, LI Na, YANG Xin, SHI Tiancheng, CONG Hao. Research on Application of Stored Energy in Different Scenarios Under the New Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 27-33. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.004
    [6]Shaokuan CAI. Discussion on Energy Storage Solutions Under the New Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S1): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.003
    [7]TANG Si, LU Lijuan. Study on the Application of Lithium Battery in Power Grid System[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(S1): 39-42. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.010
    [8]HUANG Yu. Inspiration and Situation of Domestic and International Development of Electric Power Direct Exchange[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 1-4. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.001
    [9]Yanghua LIU, Shunjiang LIN. Comprehensive Estimation Research on Offshore Wind Farm Within Electric Power Market[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 34-37. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.006
    [10]Jing SHI, Kang GONG, Yang LIU, Shu WANG. Application of Hybrid Energy Storage System in Micro-grid[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 28-34. DOI: 10.16516/j.gedi.issn2095-8676.2015.02.005
  • Cited by

    Periodical cited type(1)

    1. 吴向权,骆应东. 基于RL-MPC算法的含风电互联电网负荷频率控制研究. 水利水电技术(中英文). 2025(S1): 921-927 .

    Other cited types(2)

Catalog

    FENG Guohua, 1753308422@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (538) PDF downloads (67) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return