Advanced Search
Jinfeng NIE. Analysis of Combined Optimal Operation of Pumped Storage Power Plants and Thermal Power Plants[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 61-66. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.009
Citation: Jinfeng NIE. Analysis of Combined Optimal Operation of Pumped Storage Power Plants and Thermal Power Plants[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 61-66. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.009

Analysis of Combined Optimal Operation of Pumped Storage Power Plants and Thermal Power Plants

More Information
  • Received Date: September 10, 2017
  • Revised Date: November 06, 2017
  •   [Introduction]  Optimizing output curve of thermal power plants by using pumped storage power plants is an important means to improve the economy of power system.
      [Method]  In this paper, a mathematical model of combined optimal operation of pumped storage power plants and thermal power plants was established first. Then, an actual power system containing pumped storage power plants and thermal power plants was taken as an example for simulation. Finally, the mechanism of coal saving of combined optimal operation of pumped storage power plants and thermal power plants was revealed.
      [Result]  The simulation results show that combined optimal operation of pumped storage power plants and thermal power plants reduce the coal consumption of power system.
      [Conclusion]  We suggest that output curve of thermal power plants should be optimized by making full use of pumped storage to improve running efficiency of power system.
  • [1]
    罗莎莎,刘云,刘国中,等. 国外抽水蓄能电站发展概况及相关启示 [J]. 中外能源,2013,18(11): 26-29.
    [2]
    陈同法,张毅. 抽水蓄能电站本质功能分析 [J]. 水电与抽水蓄能,2017,3(2): 76-80.
    [3]
    徐帆,刘军,张涛,等. 考虑抽水蓄能机组的机组组合模型及求解 [J]. 电力系统自动化,2012,36(12): 36-40.
    [4]
    王伟,徐婧,赵翔,等. 中国煤电机组调峰运行现状分析 [J]. 南方能源建设,2017,4(1): 18-24.
    [5]
    曾勇,曾颖. 燃气热电联产机组选型、调峰能力及电价机制分析 [J]. 南方能源建设,2015,2(1): 66-70.
    [6]
    董超,卢恩,谭力强,等. 基于电源特性优化协调的广东电网调峰策略[J]. 广东电力,2016,29(1): 41-44+107.
    [7]
    刘芳,潘毅,杨军峰,等. 风电—火电—抽水蓄能联合优化机组组合模型 [J]. 中国电机工程学报,2015,35(4): 766-775.
    [8]
    徐飞,陈磊,金和平,等. 抽水蓄能电站与风电的联合优化运行建模及应用分析 [J]. 电力系统自动化,2013,37(1): 149-154.
    [9]
    刘德有,谭志忠,王丰. 风电—抽水蓄能联合运行系统的模拟研究 [J]. 水电能源科学,2006,24(6): 39-42+115.
    [10]
    张刘冬,殷明慧,卜京,等. 基于成本效益分析的风电—抽水蓄能联合运行优化调度模型 [J]. 电网技术,2015,39(12): 3386-3392.
    [11]
    胡泽春,丁华杰,孔涛. 风电-抽水蓄能联合日运行优化调度模型 [J]. 电力系统自动化,2012,36(2): 36-41+57.
    [12]
    潘文霞,范永威,朱莉,等. 风电场中抽水蓄能系统容量的优化选择 [J]. 电工技术学报,2008,23(3): 120-124.
    [13]
    杨苹,叶超. 风电优先上网的风水火电力系统联合优化调度 [J]. 广东电力,2017,30(4): 31-36.
    [14]
    赵洁,刘涤尘,雷庆生,等. 核电机组参与电网调峰及与抽水蓄能电站联合运行研究 [J]. 中国电机工程学报,2011,31(7): 1-6.
  • Related Articles

    [1]Ying ZHANG, Guogang ZHANG, Jian ZOU. Disscussion on the Design Philosophy to Meet Water Consumption Index of Circulation Cooling Combined-Cycle Peak-Regulation Power Plant in South China[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S1): 43-49. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.007
    [2]WEI Houjun, XIE Yan, SUN Yakun, HAN Yuxin, SOMG Minhang. Emission Characteristics and Control Technology of Flue Gas Pollutants During Peak Regulation of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 50-61. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.006
    [3]SUN Haocheng, SONG Minhang, GUO Puwei, ZHANG Changyong, WANG Jinxing. Parameter Design of Heat Storage for Auxiliary Peak Regulation System in Thermal Power Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 9-15. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.002
    [4]Xiaotian GAO, Kexin ZHENG, Chunrong CAI, Yongchun FAN, Jun KUANG. Research on Economy of Hydrogen Energy Storage for Nuclear Power Peak Shaving[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.001
    [5]Shuhui LIU, Liang TIAN. Prediction of Boiler False Water Level Under Deep Peak Load Regulation Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(1): 70-75. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.011
    [6]Bingqian WANG, Jianmin DONG, Qianfeng GUAN. Research on the Evaluation Method and Influencing Factors of Wind Power Curtailment Based on System Regulation Capability Analysis[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 71-76. DOI: 10.16516/j.gedi.issn2095-8676.2018.02.010
    [7]Wei WANG, Jing XU, Xiang ZHAO, Xiaojiang YUAN, Zhenxin LI. Analysis on Peak Load Regulation Status Quo for Coal-fired Power Plants in China[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 18-24. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.003
    [8]Ben HUA. Distributed Energy System in Coordination with Peak Load Regulation of Power System is Historically Inevitable[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(4): 8-12. DOI: 10.16516/j.gedi.issn2095-8676.2016.04.002
    [9]Yong ZENG, Ying ZENG. Research of Cogeneration Units Acting on Electric Peak-shaving Operating Mode[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 51-56. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.010
    [10]Yong ZENG, Ying ZENG. Research on Unit Selection, Peak Regulation Capability and Electricity Pricing Mechanism of Gas-fired Cogeneration[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 66-70. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.013
  • Cited by

    Periodical cited type(4)

    1. 刘世隆,韦建溪,田楠. 基于合理弃能的抽蓄-风-光-火联合发电系统多方案优化运行研究. 电网与清洁能源. 2025(02): 100-106 .
    2. 张国斌,陈玥,张佳辉,唐宁宁,牛玉广. 风-光-水-火-抽蓄联合发电系统日前优化调度研究. 太阳能学报. 2020(08): 79-85 .
    3. 王丙乾,董剑敏,关前锋,韩倩. 基于灰色关联TOPSIS法的抽水蓄能电站风险评价体系研究. 南方能源建设. 2020(S2): 56-61 . 本站查看
    4. 明珈辉,吴伟亮. 新型氢氧分级燃烧循环储能系统. 热力发电. 2019(07): 155-160 .

    Other cited types(1)

Catalog

    Jinfeng NIE

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (722) PDF downloads (38) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return