Advanced Search
Haizhou LIN, Zhibin LUO, Aiguo PEI, Hui YANG, Xiaobo WANG. Technology and Industrialization Progress on Methanol Synthesis from Carbon Dioxide and Hydrogen[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 14-19. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.002
Citation: Haizhou LIN, Zhibin LUO, Aiguo PEI, Hui YANG, Xiaobo WANG. Technology and Industrialization Progress on Methanol Synthesis from Carbon Dioxide and Hydrogen[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 14-19. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.002

Technology and Industrialization Progress on Methanol Synthesis from Carbon Dioxide and Hydrogen

More Information
  • Received Date: May 09, 2020
  • Revised Date: May 19, 2020
  • Introduction Carbon dioxide hydrogenation to methanol is one of the important pathways to realize the large-scale utilization of carbon dioxide and it will favor the development of CCUS industrial chain.
      Method  Thermodynamic characteristics, catalyst development, industrialization progress and technical economics of carbon dioxide hydrogenation to methanol were reviewed.
      Result  Cu-based catalysts, precious metal catalysts and In2O3 catalyst shows good catalytic performance in carbon dioxide hydrogenation to methanol, but they still need to be further improved to increase the carbon dioxide conversion rate and methanol selectivity. Despite the rapid progress in technology of carbon dioxide hydrogenation to methanol, which is currently in the pilot stage, it is presently difficult to apply on a large scale due to high cost of hydrogen and low price of methanol.
      Conclusion  Fortunately, the price of hydrogen will drop with the booming of the hydrogen industry, and the national carbon trading market will also start, which are beneficial to the blossom of carbon dioxide hydrogenation to methanol.
  • LIN Haizhou,LUO Zhibin,PEI Aiguo,et al.Technology and Industrialization Progress on Methanol Synthesis from Carbon Dioxide and Hydrogen[J].Southern Energy Construction,2020,07(02):14-19.

  • [1]
    IPCC. Climate change 2014: synthesis report [R]. Geneva, Switzerland: IPCC, 2014.
    [2]
    NationsUnited. United Nations framework convention on climate change [R]. Rio de Janeiro, Brazil: United Nations, 2015.
    [3]
    BP. Statistical review of world energy [R]. London: BP, 2019.
    [4]
    林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21.

    LINH Z, YANGH, LUOH Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern Energy Construction, 2019, 6(1): 8-14.
    [5]
    林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展 [J]. 化工进展, 2018, 37(12): 4874-4886.

    LINH Z, PEIA G, FANGM X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
    [6]
    SHIC F, ZHANGT, LIJ, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949.
    [7]
    JIANGX, NIEX, GUOX, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical Reviews, 2020, online. doi: 10.1021/acs.chemrev.9b00723.
    [8]
    AHMADK, UPADHYAYULAS. Greenhouse gas CO2 hydrogenation to fuels: a thermodynamic analysis [J]. Environmental Progress & Sustainable Energy, 2019, 38(1): 98-111.
    [9]
    侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展 [J]. 化工进展, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-1546.

    HOUR J, QIUR, SUNK N. Progress in the Cu-based catalyst supports for methanol synthesis from CO2 [J]. Chemical Industry and Engineering Progress, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-1546.
    [10]
    WANGW, QUZ, SONGL, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction [J]. Journal of Energy Chemistry, 2020, 40(1):22-30.
    [11]
    WANGZ Q, XUZ N, PENGS Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation [J]. ACS Catalysis, 2015, 5(7): 4255-4259.
    [12]
    闫晓峰, 高文桂, 毛文硕, 等. 溶胶-凝胶法制备Cu-ZnO-ZrO2催化剂:柠檬酸用量对催化剂性能的影响 [J]. 化工进展, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-2051.

    YANX F, GAOW G, MAOW S, et al. Preparation of Cu-ZnO-ZrO2 catalyst by sol-gel method: effect of citric acid content on catalyst performance [J]. Chemical Industry and Engineering Progress, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-2051.
    [13]
    LAM E, LARMIERK, TADAS, et al. Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts [J]. Chinese Journal of Catalysis, 2019, 40(11): 1741-1748.
    [14]
    林敏, 纳薇, 叶海船, 等. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究 [J]. 燃料化学学报, 2019, 47(10): 1214-1225.

    LINM, NAW, YEH C, et al. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol [J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.
    [15]
    FUJITANIT, SAITOM, KANAIY, et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen [J]. Applied Catalysis A: General, 1995, 125(2): 199-202.
    [16]
    LINF, JIANGX, BORERIBOONN, et al. Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2019(585): 117210.
    [17]
    HARTADIY, WIDMANND, BEHMR J. CO2 Hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects [J]. Chem SusChem, 2015, 8(3): 456-65.
    [18]
    SUNK H , FANZ G, YEJ Y, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst [J]. Journal of CO2 Utilization, 2015, 12(1): 1-6.
    [19]
    曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究 [J]. 化工学报, 2019, 70(10): 3985-3993.

    CAOC X, CHENT Y, DINGX X, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation [J]. CIESC Journal, 2019, 70(10): 3985-3993.
    [20]
    MARTINO, MARTN A J, MONDELLIC, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
    [21]
    吴晓辉. Pd/In2O3/SBA-15催化CO2加氢合成甲醇及其性能研究 [D]. 天津:天津大学, 2018.

    WUX H. Study of CO2 hydrogenation to methanol over Pd/In2O3/SBA-15 catalyst [D]. Tianjin: Tianjin University, 2018.
    [22]
    史建公, 刘志坚, 刘春生. 二氧化碳加氢制备甲醇技术进展 [J]. 中外能源, 2018, 23(9): 56-70.

    SHIJ G, LIUZ J, LIUC S. Advances in technologies for CO2 hydrogenation to methanol [J]. Sino-global Energy, 2018, 23(9): 56-70.
    [23]
    IEA. Putting CO2 to use creating value from emissions[R]. Paris: IEA, 2019.
    [24]
    Carbon Capture Journal. Mitsubishi selected to conductresearch on effective recycling of CO2 to produce methanol. [EB/OL] (2020-04-06) [2020-05-17] http://www.carboncapturejournal.com/ViewNews.aspx?NewsID=4326.
    [25]
    中国科学院. 中科院完成二氧化碳加氢制甲醇工业单管实验 [J]. 乙醛醋酸化工, 2016(7): 48.

    Chinese Academy of Sciences. The Chinese Academy of Sciences completed the industrial single-tube experiment of the carbon dioxide hydrogenation to methanol [J]. Acetaldehyde Acetic Acid Chemical, 2016(7): 48.
    [26]
    中国科学院. 中科院二氧化碳甲醇技术完成工艺包编制 [J]. 天然气化工(C1化学与化工), 2016, 41(3): 15.

    Chinese Academy of Sciences. The Chinese Academy of Sciences completed preparation of process package of CO2 to methanol technology [J]. Natural Gas Chemical Industry, 2016, 41(3): 15.
    [27]
    《煤化工》编辑部. 首套千吨级太阳能发电、电解水制氢、二氧化碳与氢气合成甲醇示范项目试车成功 [J]. 煤化工, 2020, 48(1): 60.

    Editorial Board of Coal Chemical Industry. The first demonstration project of 1,000-ton solar power generation, hydrogen production from electrolyzed water, carbon dioxide and hydrogen for methanol synthesis was successfully commissioned [J]. Coal Chemical Industry, 2020, 48(1): 60.
    [28]
    《石油化工技术与经济》编辑部. 河南顺成与冰岛碳循环签署建CO2制甲醇装置协议 [J]. 石油化工技术与经济, 2019, 35(4): 33.

    Editorial Board of Technology & Economics in Petrochemicals. Henan Shuncheng signed an agreement with Iceland's carbon cycle to build a CO2 methanol plant [J]. Technology & Economics in Petrochemicals, 2019, 35(4): 33.
    [29]
    全国气体标准化技术委员会. 二氧化碳制甲醇技术导则: GB/T 34236—2017 [S]. 北京:中国标准出版社, 2017.

    National Gas Standardization Technical Committee. Technical guideline for methanol preparation from carbon dioxide: GB / T 34236—2017 [S]. Beijing: China Standard Press, 2017.
    [30]
    全国气体标准化技术委员会. 二氧化碳制甲醇安全技术规程: GB/T 34250—2017 [S]. 北京:中国标准出版社, 2017.

    National Gas Standardization Technical Committee. Technical code for safety of methanol preparation from carbon dioxide: GB/T 34250—2017 [S]. Beijing: China Standard Press, 2017.
    [31]
    PREZ-FORTESM, SCHNEBERGERJ C, BOULAMANTIA, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment [J]. Applied Energy, 2016(161):718-732.
    [32]
    WIJKA V, CHATZIMARKAKISJ. Green hydrogen for a European green deal a 2 × 40 GW initatve [R]. Brussels Belgium: Hydrogen Europe, 2020.
  • Cited by

    Periodical cited type(31)

    1. 叶晓东,陈军,陈曦,王海妹,王慧珺. “双碳”目标下的中国CCUS技术挑战及对策. 油气藏评价与开发. 2024(01): 1-9 .
    2. 王艺强,刘录强,张志成,惠若男. 化学储氢介质实现“西氢东送”的可行性研究. 储能科学与技术. 2024(03): 1050-1058 .
    3. 姚炜珊,侯雅磊,魏国强,张声森,杨希贤,邓丽芳,许仕博. 二氧化碳资源化利用研究进展. 新能源进展. 2024(02): 182-192 .
    4. 李剑,张中亮,马宗虎,陈冠英,张万钦. 生物质沼气制深绿生物甲醇技术路线及商业模型探析. 中国沼气. 2024(04): 43-46 .
    5. 翟云楚,金丽艳,谢佳家,张杰,孙铠,童晓凡. 二氧化碳加氢合成甲醇工艺系统分析. 南方能源建设. 2024(05): 50-56 . 本站查看
    6. 梁希,余晓洁,夏菖佑,刘牧心,高志豪. 二氧化碳利用路径气候效益与经济可行性评估. 南方能源建设. 2024(05): 1-14 . 本站查看
    7. 谢昂均,杨正军,徐钢,刘文毅,薛小军,刘启凡. 我国能源行业实现碳中和的产业链情景分析. 动力工程学报. 2024(11): 1733-1740+1749 .
    8. 杨攀峰,黄宁,程一步. 绿色甲醇生产技术比较研究. 当代石油石化. 2024(10): 36-41 .
    9. 杨军,梁丽烨,李华,徐彩玲,吴剑峰,丑凌军. 稀土元素改性CO_2加氢制甲醇催化剂的研究进展. 低碳化学与化工. 2024(11): 1-11 .
    10. 汪颖异,金强,潘放. 基于绿氢的低碳甲醇制备可行性研究. 现代化工. 2024(12): 229-234 .
    11. 张中亮,李剑,马宗虎,冯冰,张万钦. 生物燃气制绿色甲醇技术路线探析及模型构建. 石油与天然气化工. 2024(06): 56-61 .
    12. 张尤慧. 基于成本控制的绿色甲醇合成探究. 中国战略新兴产业. 2024(36): 110-112 .
    13. 辛月,曾杰. CO_2加氢制液体产物高效催化剂的设计及催化机理. 洁净煤技术. 2024(12): 1-21 .
    14. 徐钢,薛小军,张钟,吴志聪,梁士兴,陈衡,雷兢. 一种基于电解水制氢及甲醇合成的碳中和能源技术路线. 中国电机工程学报. 2023(01): 191-201 .
    15. 程一步. 低碳甲醇燃料全生命周期碳排分析. 石油石化绿色低碳. 2023(01): 9-16 .
    16. 张轩,历一平. 绿色甲醇生产工艺技术经济分析. 现代化工. 2023(03): 209-212 .
    17. 孙翔,刘成良,牛霞,赵陆尧. 风光耦合制氢系统典型设计方案研究. 南方能源建设. 2023(03): 112-119 . 本站查看
    18. 郑可昕,高啸天,范永春,罗志斌,李震,郑赟,刘云. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究. 南方能源建设. 2023(03): 63-73 . 本站查看
    19. 梁锋. 基于CO_2捕集和利用制甲醇方案的研究. 能源化工. 2023(02): 1-7 .
    20. 陈艾,焦洪桥,王秀江,王倩,杨靖华,杨丽坤. 新型煤化工产业生态化发展的政策分析、技术路径研究. 煤化工. 2023(03): 1-5 .
    21. 贾承宇,张钟,陈衡,王轶男,徐钢,陈宏刚. 基于电解水制氢和甲醇合成/重整的零碳新能源消纳系统. 现代化工. 2023(08): 219-223 .
    22. 杨欢红,周泽,黄文焘,周思怡,焦伟,柴磊. 计及废物处理和甲醇合成的工业园区综合能源低碳经济运行策略. 电网技术. 2023(10): 4201-4210 .
    23. 杨国山,朱杰,杨昌海,刘永成,邱一苇. 适应波动性风电的电制氢合成甲醇系统柔性优化调度. 电力建设. 2023(11): 149-162 .
    24. 杨正军,梁士兴,徐钢,刘文毅,王颖,崔建卫. 风光互补电醇联产系统的容量优化配置. 综合智慧能源. 2023(12): 71-78 .
    25. 史培艳,刘翠. 科学精神视域下二氧化碳甲醇化微项目教学实践. 化学教与学. 2022(03): 58-62 .
    26. 王玉亭,张钟,张淇钧,陈衡,徐钢. 基于电解水制氢和生物质电厂的电与甲醇联产系统. 科技和产业. 2022(05): 288-294 .
    27. 淡玄玄,陈占江,周佳,靳芳明,田方方,原晓丽. 氯碱工业废气二氧化碳资源化利用研究现状. 氯碱工业. 2022(02): 30-32 .
    28. 徐钢,张钟,吴志聪,薛小军,陈衡. 基于绿氢和生物质富氧燃烧技术的零碳甲醇合成系统. 动力工程学报. 2022(10): 925-932 .
    29. 罗志斌,龙冉,王小博,裴爱国,熊宇杰. 热增强的光催化二氧化碳还原技术. 化工进展. 2021(09): 5156-5165 .
    30. 乞孟迪,柯晓明,程一步,刘红光. 中国石油峰值与石化行业低碳转型发展. 石油石化绿色低碳. 2021(05): 1-6+43 .
    31. 纳薇,左俊怡,杨学磊,张平尧,文蹇林,高文桂. 固溶体催化剂在CO_2加氢制甲醇反应中的应用. 精细化工. 2021(12): 2415-2421+2497 .

    Other cited types(10)

Catalog

    Xiaobo WANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Tables(1)

    Article Metrics

    Article views (1861) PDF downloads (506) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return