Citation: |
Haizhou LIN, Zhibin LUO, Aiguo PEI, Hui YANG, Xiaobo WANG. |
LIN Haizhou,LUO Zhibin,PEI Aiguo,et al.Technology and Industrialization Progress on Methanol Synthesis from Carbon Dioxide and Hydrogen[J].Southern Energy Construction,2020,07(02):14-19.
[1] |
IPCC. Climate change 2014: synthesis report [R]. Geneva, Switzerland: IPCC, 2014.
|
[2] |
NationsUnited. United Nations framework convention on climate change [R]. Rio de Janeiro, Brazil: United Nations, 2015.
|
[3] |
BP. Statistical review of world energy [R]. London: BP, 2019.
|
[4] |
林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21.
LINH Z, YANGH, LUOH Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern Energy Construction, 2019, 6(1): 8-14.
|
[5] |
林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展 [J]. 化工进展, 2018, 37(12): 4874-4886.
LINH Z, PEIA G, FANGM X. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
|
[6] |
SHIC F, ZHANGT, LIJ, et al. Powering the future with liquid sunshine [J]. Joule, 2018, 2(10): 1925-1949.
|
[7] |
JIANGX, NIEX, GUOX, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical Reviews, 2020, online. doi: 10.1021/acs.chemrev.9b00723.
|
[8] |
AHMADK, UPADHYAYULAS. Greenhouse gas CO2 hydrogenation to fuels: a thermodynamic analysis [J]. Environmental Progress & Sustainable Energy, 2019, 38(1): 98-111.
|
[9] |
侯瑞君, 邱瑞, 孙克宁. Cu基CO2合成甲醇催化剂载体的研究进展 [J]. 化工进展, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-1546.
HOUR J, QIUR, SUNK N. Progress in the Cu-based catalyst supports for methanol synthesis from CO2 [J]. Chemical Industry and Engineering Progress, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-1546.
|
[10] |
WANGW, QUZ, SONGL, et al. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction [J]. Journal of Energy Chemistry, 2020, 40(1):22-30.
|
[11] |
WANGZ Q, XUZ N, PENGS Y, et al. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation [J]. ACS Catalysis, 2015, 5(7): 4255-4259.
|
[12] |
闫晓峰, 高文桂, 毛文硕, 等. 溶胶-凝胶法制备Cu-ZnO-ZrO2催化剂:柠檬酸用量对催化剂性能的影响 [J]. 化工进展, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-2051.
YANX F, GAOW G, MAOW S, et al. Preparation of Cu-ZnO-ZrO2 catalyst by sol-gel method: effect of citric acid content on catalyst performance [J]. Chemical Industry and Engineering Progress, 2020, online. doi: 10.16085/j.issn.1000-6613.2019-2051.
|
[13] |
LAM E, LARMIERK, TADAS, et al. Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts [J]. Chinese Journal of Catalysis, 2019, 40(11): 1741-1748.
|
[14] |
林敏, 纳薇, 叶海船, 等. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究 [J]. 燃料化学学报, 2019, 47(10): 1214-1225.
LINM, NAW, YEH C, et al. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol [J]. Journal of Fuel Chemistry and Technology, 2019, 47(10): 1214-1225.
|
[15] |
FUJITANIT, SAITOM, KANAIY, et al. Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen [J]. Applied Catalysis A: General, 1995, 125(2): 199-202.
|
[16] |
LINF, JIANGX, BORERIBOONN, et al. Effects of supports on bimetallic Pd-Cu catalysts for CO2 hydrogenation to methanol [J]. Applied Catalysis A: General, 2019(585): 117210.
|
[17] |
HARTADIY, WIDMANND, BEHMR J. CO2 Hydrogenation to methanol on supported Au catalysts under moderate reaction conditions: support and particle size effects [J]. Chem SusChem, 2015, 8(3): 456-65.
|
[18] |
SUNK H , FANZ G, YEJ Y, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst [J]. Journal of CO2 Utilization, 2015, 12(1): 1-6.
|
[19] |
曹晨熙, 陈天元, 丁晓旭, 等. 负载型铟基催化剂二氧化碳加氢动力学研究 [J]. 化工学报, 2019, 70(10): 3985-3993.
CAOC X, CHENT Y, DINGX X, et al. Kinetics study on supported indium-based catalysts in carbon dioxide hydrogenation [J]. CIESC Journal, 2019, 70(10): 3985-3993.
|
[20] |
MARTINO, MARTN A J, MONDELLIC, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation [J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
|
[21] |
吴晓辉. Pd/In2O3/SBA-15催化CO2加氢合成甲醇及其性能研究 [D]. 天津:天津大学, 2018.
WUX H. Study of CO2 hydrogenation to methanol over Pd/In2O3/SBA-15 catalyst [D]. Tianjin: Tianjin University, 2018.
|
[22] |
史建公, 刘志坚, 刘春生. 二氧化碳加氢制备甲醇技术进展 [J]. 中外能源, 2018, 23(9): 56-70.
SHIJ G, LIUZ J, LIUC S. Advances in technologies for CO2 hydrogenation to methanol [J]. Sino-global Energy, 2018, 23(9): 56-70.
|
[23] |
IEA. Putting CO2 to use creating value from emissions[R]. Paris: IEA, 2019.
|
[24] |
Carbon Capture Journal. Mitsubishi selected to conductresearch on effective recycling of CO2 to produce methanol. [EB/OL] (2020-04-06) [2020-05-17] http://www.carboncapturejournal.com/ViewNews.aspx?NewsID=4326.
|
[25] |
中国科学院. 中科院完成二氧化碳加氢制甲醇工业单管实验 [J]. 乙醛醋酸化工, 2016(7): 48.
Chinese Academy of Sciences. The Chinese Academy of Sciences completed the industrial single-tube experiment of the carbon dioxide hydrogenation to methanol [J]. Acetaldehyde Acetic Acid Chemical, 2016(7): 48.
|
[26] |
中国科学院. 中科院二氧化碳甲醇技术完成工艺包编制 [J]. 天然气化工(C1化学与化工), 2016, 41(3): 15.
Chinese Academy of Sciences. The Chinese Academy of Sciences completed preparation of process package of CO2 to methanol technology [J]. Natural Gas Chemical Industry, 2016, 41(3): 15.
|
[27] |
《煤化工》编辑部. 首套千吨级太阳能发电、电解水制氢、二氧化碳与氢气合成甲醇示范项目试车成功 [J]. 煤化工, 2020, 48(1): 60.
Editorial Board of Coal Chemical Industry. The first demonstration project of 1,000-ton solar power generation, hydrogen production from electrolyzed water, carbon dioxide and hydrogen for methanol synthesis was successfully commissioned [J]. Coal Chemical Industry, 2020, 48(1): 60.
|
[28] |
《石油化工技术与经济》编辑部. 河南顺成与冰岛碳循环签署建CO2制甲醇装置协议 [J]. 石油化工技术与经济, 2019, 35(4): 33.
Editorial Board of Technology & Economics in Petrochemicals. Henan Shuncheng signed an agreement with Iceland's carbon cycle to build a CO2 methanol plant [J]. Technology & Economics in Petrochemicals, 2019, 35(4): 33.
|
[29] |
全国气体标准化技术委员会. 二氧化碳制甲醇技术导则: GB/T 34236—2017 [S]. 北京:中国标准出版社, 2017.
National Gas Standardization Technical Committee. Technical guideline for methanol preparation from carbon dioxide: GB / T 34236—2017 [S]. Beijing: China Standard Press, 2017.
|
[30] |
全国气体标准化技术委员会. 二氧化碳制甲醇安全技术规程: GB/T 34250—2017 [S]. 北京:中国标准出版社, 2017.
National Gas Standardization Technical Committee. Technical code for safety of methanol preparation from carbon dioxide: GB/T 34250—2017 [S]. Beijing: China Standard Press, 2017.
|
[31] |
PREZ-FORTESM, SCHNEBERGERJ C, BOULAMANTIA, et al. Methanol synthesis using captured CO2 as raw material: techno-economic and environmental assessment [J]. Applied Energy, 2016(161):718-732.
|
[32] |
WIJKA V, CHATZIMARKAKISJ. Green hydrogen for a European green deal a 2 × 40 GW initatve [R]. Brussels Belgium: Hydrogen Europe, 2020.
|
1. |
叶晓东,陈军,陈曦,王海妹,王慧珺. “双碳”目标下的中国CCUS技术挑战及对策. 油气藏评价与开发. 2024(01): 1-9 .
![]() | |
2. |
王艺强,刘录强,张志成,惠若男. 化学储氢介质实现“西氢东送”的可行性研究. 储能科学与技术. 2024(03): 1050-1058 .
![]() | |
3. |
姚炜珊,侯雅磊,魏国强,张声森,杨希贤,邓丽芳,许仕博. 二氧化碳资源化利用研究进展. 新能源进展. 2024(02): 182-192 .
![]() | |
4. |
李剑,张中亮,马宗虎,陈冠英,张万钦. 生物质沼气制深绿生物甲醇技术路线及商业模型探析. 中国沼气. 2024(04): 43-46 .
![]() | |
5. |
翟云楚,金丽艳,谢佳家,张杰,孙铠,童晓凡. 二氧化碳加氢合成甲醇工艺系统分析. 南方能源建设. 2024(05): 50-56 .
![]() | |
6. |
梁希,余晓洁,夏菖佑,刘牧心,高志豪. 二氧化碳利用路径气候效益与经济可行性评估. 南方能源建设. 2024(05): 1-14 .
![]() | |
7. |
谢昂均,杨正军,徐钢,刘文毅,薛小军,刘启凡. 我国能源行业实现碳中和的产业链情景分析. 动力工程学报. 2024(11): 1733-1740+1749 .
![]() | |
8. |
杨攀峰,黄宁,程一步. 绿色甲醇生产技术比较研究. 当代石油石化. 2024(10): 36-41 .
![]() | |
9. |
杨军,梁丽烨,李华,徐彩玲,吴剑峰,丑凌军. 稀土元素改性CO_2加氢制甲醇催化剂的研究进展. 低碳化学与化工. 2024(11): 1-11 .
![]() | |
10. |
汪颖异,金强,潘放. 基于绿氢的低碳甲醇制备可行性研究. 现代化工. 2024(12): 229-234 .
![]() | |
11. |
张中亮,李剑,马宗虎,冯冰,张万钦. 生物燃气制绿色甲醇技术路线探析及模型构建. 石油与天然气化工. 2024(06): 56-61 .
![]() | |
12. |
张尤慧. 基于成本控制的绿色甲醇合成探究. 中国战略新兴产业. 2024(36): 110-112 .
![]() | |
13. |
辛月,曾杰. CO_2加氢制液体产物高效催化剂的设计及催化机理. 洁净煤技术. 2024(12): 1-21 .
![]() | |
14. |
徐钢,薛小军,张钟,吴志聪,梁士兴,陈衡,雷兢. 一种基于电解水制氢及甲醇合成的碳中和能源技术路线. 中国电机工程学报. 2023(01): 191-201 .
![]() | |
15. |
程一步. 低碳甲醇燃料全生命周期碳排分析. 石油石化绿色低碳. 2023(01): 9-16 .
![]() | |
16. |
张轩,历一平. 绿色甲醇生产工艺技术经济分析. 现代化工. 2023(03): 209-212 .
![]() | |
17. |
孙翔,刘成良,牛霞,赵陆尧. 风光耦合制氢系统典型设计方案研究. 南方能源建设. 2023(03): 112-119 .
![]() | |
18. |
郑可昕,高啸天,范永春,罗志斌,李震,郑赟,刘云. 支撑绿氢大规模发展的氨、甲醇技术对比及应用发展研究. 南方能源建设. 2023(03): 63-73 .
![]() | |
19. |
梁锋. 基于CO_2捕集和利用制甲醇方案的研究. 能源化工. 2023(02): 1-7 .
![]() | |
20. |
陈艾,焦洪桥,王秀江,王倩,杨靖华,杨丽坤. 新型煤化工产业生态化发展的政策分析、技术路径研究. 煤化工. 2023(03): 1-5 .
![]() | |
21. |
贾承宇,张钟,陈衡,王轶男,徐钢,陈宏刚. 基于电解水制氢和甲醇合成/重整的零碳新能源消纳系统. 现代化工. 2023(08): 219-223 .
![]() | |
22. |
杨欢红,周泽,黄文焘,周思怡,焦伟,柴磊. 计及废物处理和甲醇合成的工业园区综合能源低碳经济运行策略. 电网技术. 2023(10): 4201-4210 .
![]() | |
23. |
杨国山,朱杰,杨昌海,刘永成,邱一苇. 适应波动性风电的电制氢合成甲醇系统柔性优化调度. 电力建设. 2023(11): 149-162 .
![]() | |
24. |
杨正军,梁士兴,徐钢,刘文毅,王颖,崔建卫. 风光互补电醇联产系统的容量优化配置. 综合智慧能源. 2023(12): 71-78 .
![]() | |
25. |
史培艳,刘翠. 科学精神视域下二氧化碳甲醇化微项目教学实践. 化学教与学. 2022(03): 58-62 .
![]() | |
26. |
王玉亭,张钟,张淇钧,陈衡,徐钢. 基于电解水制氢和生物质电厂的电与甲醇联产系统. 科技和产业. 2022(05): 288-294 .
![]() | |
27. |
淡玄玄,陈占江,周佳,靳芳明,田方方,原晓丽. 氯碱工业废气二氧化碳资源化利用研究现状. 氯碱工业. 2022(02): 30-32 .
![]() | |
28. |
徐钢,张钟,吴志聪,薛小军,陈衡. 基于绿氢和生物质富氧燃烧技术的零碳甲醇合成系统. 动力工程学报. 2022(10): 925-932 .
![]() | |
29. |
罗志斌,龙冉,王小博,裴爱国,熊宇杰. 热增强的光催化二氧化碳还原技术. 化工进展. 2021(09): 5156-5165 .
![]() | |
30. |
乞孟迪,柯晓明,程一步,刘红光. 中国石油峰值与石化行业低碳转型发展. 石油石化绿色低碳. 2021(05): 1-6+43 .
![]() | |
31. |
纳薇,左俊怡,杨学磊,张平尧,文蹇林,高文桂. 固溶体催化剂在CO_2加氢制甲醇反应中的应用. 精细化工. 2021(12): 2415-2421+2497 .
![]() |
Tables(1)