Advanced Search
XU Qianglin, LI Hua, SONG Zhiquan, XU Meng, ZHANG Xining. Research on Overall Design of Quench Protection System for CFETR[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 33-38. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.004
Citation: XU Qianglin, LI Hua, SONG Zhiquan, XU Meng, ZHANG Xining. Research on Overall Design of Quench Protection System for CFETR[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 33-38. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.004

Research on Overall Design of Quench Protection System for CFETR

More Information
  • Received Date: September 12, 2021
  • Revised Date: January 20, 2022
  • Available Online: May 04, 2022
  •   Introduction  The huge energy stored in the superconducting magnet in quench state is transferred and consumed by China Fusion Engineering Experimental Reactor (CFETR) quench protection system to prevent it from damage. In order to meet the design requirements of CFETR quench protection system, the overall design of the system is carried out in this paper.
      Method  The basic principle and action logic of quench protection system were introduced, and the system design parameters of toroidal field coil (TF) quench protection unit and poloidal field / central solenoid coil (PF/CS) quench protection unit were described respectively.
      Result  The two different schemes currently designed are analyzed. The topological structure and the switching logic of the quench protection switch, and the design requirements of other components are mainly introduced.
      Conclusion  For the overall design scheme of the system, due to low cost, less land occupation, relatively mature technology and high feasibility, the mechanical DC switch with artificial current zero-crossing is the preferred scheme. Taking into account good prospects for development, hybrid DC switch with mechanical switch and solid-state switch is chosen as alternative.
  • [1]
    RUMMEL T, GAUPP O, LOCHNER G, et al. Quench protection for the superconducting magnet system of WENDELSTEIN 7-X [J]. IEEE Transactions on Applied Superconductivity, 2002, 12(1): 1382-1385. DOI: 10.1109/TASC.2002. 1018660.
    [2]
    RUMMEL T, MONNICH T. Acceptance test of the first power supply and protection system module for W7-X [J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 747-750. DOI: 10.1109/TASC.2006.870532.
    [3]
    BONICELLI T, LORENZI A D, HRABAL D, et al. The European development of a full scale switching unit for the ITER switching and discharging networks [J]. Fusion Engineering & Design, 2005, 75(11): 193-200. DOI: 10.1016/j.fusengdes.2005.06.225.
    [4]
    SONG I, ROSHAL A, TANCHUK V, et al. The fast discharge system of ITER superconducting magnets[C]//IEEE. 2011 International Conference on Electrical Machines and Systems, Beijing, 2011. Beijing: IEEE, 2011: 1-6. DOI: 10.1109/ICEMS.2011.6073779.
    [5]
    NEUMEYER C, BENFATTO I, HOURTOULE J, et al. ITER power supply innovations and advances[C]// IEEE. 2013 IEEE 25th Symposium on Fusion Engineering (SOFE), San Francisco, USA, 2013. San Francisco, USA: IEEE, 2013: 1-8. DOI: 10.1109/SOFE.2013.6635287.
    [6]
    SONG I, CHOI C, CHO M. Quench protection system for the superconducting coil of the KSTAR tokamak [J]. IEEE Transactions on Applied Superconductivity, 2007, 17(1): 1-6. DOI: 10.1109/TASC.2006.887540.
    [7]
    OH Y K, CHOI C H, SA J W, et al. KSTAR magnet structure design [J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2066-2069. DOI: 10.1109/77.920262.
    [8]
    CHOI J H, YANG H L, AHN H S, et al. Overview of superconducting magnet power supply system for the KSTAR 1st plasma experiment [J]. Nuclear Engineering & Technology, 2008, 40(6): 459-466. DOI: 10.5516/NET.2008.40.6.459.
    [9]
    SONG I, CHO M. Quench protection system for KSTAR superconducting coil[C]//IEEE. 2007 IEEE International Symposium on Industrial Electronics, Vigo, Spain, 2007. Vigo, Spain: IEEE, 2007: 949-952. DOI: 10.1109/ISIE.2007.4374725.
    [10]
    NOVELLO L, GAIO E, PIOVAN R. Feasibility study of a hybrid mechanical-static DC circuit breaker for superconducting magnet protection [J]. IEEE Transactions on Applied Superconductivity, 2009, 19(2): 76-83. DOI: 10.1109/TASC.2009.2013963.
    [11]
    GAIO E, NOVELLO L, PIOVAN R, et al. Conceptual design of the quench protection circuits for the JT-60SA superconducting magnets [J]. Fusion Engineering & Design, 2009, 84(2-6): 804-809. DOI: 10.1016/j.fusengdes.2008.12.100.
    [12]
    GAIO E, MAISTRELLO A, BARP M, et al. Full scale prototype of the JT-60SA quench protection circuits [J]. Fusion Engineering & Design, 2013, 88(6-8): 563-567. DOI: 10.1016/j.fusengdes.2013.02.083.
    [13]
    GAIO E, MAISTRELLO A, COFFETTI A, et al. Final design of the quench protection circuits for the JT-60SA superconducting magnets [J]. IEEE Trans. on Plasma Science, 2012, 40(3): 557-563. DOI: 10.1109/TPS.2011.2171008.
    [14]
    李华, 宋执权, 汪舒生, 等. 核聚变装置中直流保护开关的研究进展 [J]. 中国电机工程学报, 2016, 36(增刊1): 233-239. DOI: 10.13334/j.0258-8013.pcsee.161406.

    LI H, SONG Z Q, WANG S S, et al. Study on DC protection switch for superconducting coils in magnetic confinement fusion device [J]. Proceedings of the CSEE, 2016, 36(Supp. 1): 233-239. DOI: 10.13334/j.0258-8013.pcsee.161406.
    [15]
    俞斌. 多断口直流断路器中的串联多重火花间隙研究[D]. 武汉: 华中科技大学, 2015. DOI: 10.7666/d.D732861.

    YU B. Study on the series multi-gap spark gap applying in the multi-break DC circuit breaker[D]. Wuhan: Huazhong University of Science and Technology, 2015. DOI: 10.7666/d.D732861.
    [16]
    何俊佳, 袁召, 赵文婷, 等. 直流断路器技术发展综述 [J]. 南方电网技术, 2015, 9(2): 9-15. DOI: 10.13648/j.cnki.issn1674-0629.2015.02.002.

    HE J J, YUAN Z, ZHAO W T, et al. Review of DC circuit breaker technology development [J]. Southern Power System Technology, 2015, 9(2): 9-15. DOI: 10.13648/j.cnki.issn1674-0629.2015.02.002.
    [17]
    汤存文, 李华, 宋执权, 等. 中国聚变工程实验堆大功率混合直流开关概念设计 [J]. 强激光与粒子束, 2019, 31(4): 59-63. DOI: 10.11884/HPLPB201931.180357.

    TANG C W, LI H, SONG Z Q, et al. Conceptual design of high power hybrid DC switch for China fusion engineering experiment reactor [J]. High Power Laser and Particle Beams, 2019, 31(4): 59-63. DOI: 10.11884/HPLPB201931.180357.
  • Cited by

    Periodical cited type(4)

    1. 王腾. 托卡马克超导磁体失超电压探测技术. 南方能源建设. 2024(03): 65-74 . 本站查看
    2. 李振瀚,李华,鲍晓华,高格. 120 kA脉冲电抗器在振荡放电电路中的电磁场分布优化(英文). 南方能源建设. 2024(03): 23-35+4 . 本站查看
    3. 吴琳君,李海燕,雷枭,吴一,刘邵轩. HL-3聚变用大容量Crowbar. 南方能源建设. 2024(03): 137-145 . 本站查看
    4. 程志方,马韬,胡磊. 基于有源功率法的高温超导线圈失超检测装置开发. 低温物理学报. 2024(04): 228-242 .

    Other cited types(1)

Catalog

    ZHANG Xining, 15595791689@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (969) PDF downloads (106) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return