Advanced Search
XU Weixuan. Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 88-93. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.010
Citation: XU Weixuan. Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 88-93. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.010

Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units

More Information
  • Received Date: January 17, 2022
  • Revised Date: March 02, 2022
  • Accepted Date: March 02, 2022
  • Available Online: May 29, 2022
  •   Introduction  In order to solve the prominent contradiction between electric load and heat load faced by coal-fired units and ensure the heat source supply of units in winter, it is necessary to study the heating transformation scheme to break its thermoelectric coupling relationship.
      Method  This paper made a model analysis of two heating transformation modes of a type of 300 MW coal-fired unit, compared the heating capacity and other data before and after the unit transformation, and studied the thermoelectric decoupling heating transformation scheme in line with the production conditions. And the economic effect of heating transformation of cogeneration units was summarized.
      Conclusion  Through the analysis of the heating model in this paper, it can be seen that the coal-fired unit only relies on steam extraction for heating, which is greatly restricted by the power load. The heating capacity at high power load is 2~3 times that at low power load. When the electric load is severely limited, its heating capacity cannot meet the heating demand in winter. But after retrofit of high back pressure and modification of the cylinder, the capacity of peak shaving increases, and the heating capacity increases to 3~4 times under the same electric load, which effectively solved the problem.
      Result  The research result can be used as a reference for the heating transformation of the same type of coal-fired units in the future.
  • [1]
    付怀仁, 宋春节, 丛春华. 燃煤电厂供热改造技术浅析 [J]. 区域供热, 2019(2): 74-78. DOI: 10.16641/j.cnki.cn11-3241/tk.2019.02.015.

    FU H R, SONG C J, CONG C H. Analysis of heat supply reform technology in coal-fired power plant [J]. District Heating, 2019(2): 74-78. DOI: 10.16641/j.cnki.cn11-3241/tk.2019.02.015.
    [2]
    郭东东. 热电联产供热系统节能分析及改进 [J]. 中国资源综合利用, 2018, 36(2): 90-92. DOI: 10.3969/j.issn.1008-9500.2018.02.033.

    GUO D D. Energy saving analysis and improvement of cogeneration heating system [J]. China Resources Comprehensive Utilization, 2018, 36(2): 90-92. DOI: 10.3969/j.issn.1008-9500.2018.02.033.
    [3]
    吴斌, 邵志跃, 胡欣, 等. 215 MW机组工业抽汽供热改造 [J]. 热力发电, 2015, 44(5): 87-90. DOI: 10.3969/j.issn.1002-3364.2015.05.087.

    WU B, SHAO Z Y, HU X, et al. Heat supply transformation for four 215 MW units using steam extraction [J]. Thermal Power Generation, 2015, 44(5): 87-90. DOI: 10.3969/j.issn.1002-3364.2015.05.087.
    [4]
    张军辉, 杜献伟, 张文涛. 300 MW纯凝机组供热改造经济性分析 [J]. 发电技术, 2019, 40(1): 71-73. DOI: 10.12096/j.2096-4528.pgt.18068.

    ZHANG J H, DU X W, ZHANG W T. Economic analysis of heating reform of 300 MW condensing power plant [J]. Power Generation Technology, 2019, 40(1): 71-73. DOI: 10.12096/j.2096-4528.pgt.18068.
    [5]
    刘中祥. 大容量纯凝式机组改供热后的调峰能力计算 [J]. 江苏电机工程, 2015, 34(2): 75-77+81. DOI: 10.19464/j.cnki.cn32-1541/tm.2015.02.021.

    LIU Z X. Peaking regulation capacity calculation of the cogeneration unit renovated from pure condensing unit [J]. Jiangsu Electrical Engineering, 2015, 34(2): 75-77+81. DOI: 10.19464/j.cnki.cn32-1541/tm.2015.02.021.
    [6]
    宣伟东. 300 MW机组高低旁路联合供热改造实践分析 [J]. 节能技术, 2020, 38(6): 561-564. DOI: 10.3969/j.issn.1002-6339.2020.06.018.

    XUAN W D. Practical analysis of high and low bypass combined heating system for 300 MW units [J]. Energy Conservation Technology, 2020, 38(6): 561-564. DOI: 10.3969/j.issn.1002-6339.2020.06.018.
    [7]
    王斌, 李志炜, 谭锐, 等. 基于背压汽轮机供热改造技术的节能效果试验研究 [J]. 电站系统工程, 2021, 37(5): 54-56+60. DOI: 10.19666/j.rlfd.201807137.

    WANG B, LI Z W, TAN R, et al. Experimental study on energy saving based on heating retrofit technology of back-pressure turbine [J]. Power System Engineering, 2021, 37(5): 54-56+60. DOI: 10.19666/j.rlfd.201807137.
    [8]
    戴昕, 范丽凯. 300 MW空冷机组高背压供热改造及应用 [J]. 自动化应用, 2020(11): 46-48. DOI: 10.19769/j.zdhy.2020.11.017.

    DAI X, FAN L K. Transformation and application of high back pressure heating of 300 MW air cooling unit [J]. Automation Application, 2020(11): 46-48. DOI: 10.19769/j.zdhy.2020.11.017.
    [9]
    张钦鹏, 王学栋, 李峰. 330 MW汽轮机组切除低压缸运行的供热能力和调峰能力分析 [J]. 山东电力技术, 2020, 47(12): 72-76. DOI: 10.3969/j.issn.1007-9904.2020.12.017.

    ZHANG Q P, WANG X D, LI F. Analysis of heating capacity and peak-regulating capacity of 330 MW steam turbine unit with low-pressure cylinder off operation [J]. Shandong Electric Power Technology, 2020, 47(12): 72-76. DOI: 10.3969/j.issn.1007-9904.2020.12.017.
    [10]
    高新勇, 孙士恩, 何晓红, 等. 基于热力学第二定律的热电厂低真空供热能耗分析 [J]. 热能动力工程, 2016, 31(6): 59-65. DOI: 10.16146/j.cnki.rndlgc.2016.06.010.

    GAO X Y, SUN S E, HE X H, et al. Energy consumption analysis of low vacuum heating in thermal power plant based on the second law of thermo-dynamics [J]. Journal of Engineering for Thermal Energy and Power, 2016, 31(6): 59-65. DOI: 10.16146/j.cnki.rndlgc.2016.06.010.
    [11]
    王汝武, 曹猛. 提高热电厂效率的几项措施 [J]. 节能, 2007, 26(3): 41-44. DOI: 10.3969/j.issn.1004-7948.2007.03.015.

    WANG R W, CAO M. The measures of improving the efficiency of power plants [J]. Energy Conservation, 2007, 26(3): 41-44. DOI: 10.3969/j.issn.1004-7948.2007.03.015.
    [12]
    李勇, 杨磊磊. 汽轮机变工况各级热力参数计算方法研究 [J]. 汽轮机技术, 2015, 57(5): 321-325+340. DOI: 10.3969/j.issn.1001-5884.2015.05.001.

    LI Y, YANG L L. Research on calculation method of varying condition thermal parameters for steam turbine [J]. Turbine Technology, 2015, 57(5): 321-325+340. DOI: 10.3969/j.issn.1001-5884.2015.05.001.
    [13]
    杨志平, 杨勇平. 1 000 MW燃煤机组能耗及其分布 [J]. 华北电力大学学报(自然科学版), 2012, 39(2): 76-80. DOI: 10.3969/j.issn.1007-2691.2012.01.015.

    YANG Z P, YANG Y P. Energy consumption and distribution of 1 000 MW coal-fired power generating unit [J]. Journal of North China Electric Power University (Natural Science Edition), 2012, 39(2): 76-80. DOI: 10.3969/j.issn.1007-2691.2012.01.015.
    [14]
    王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095.

    WANG J X, HAO J, LIU C, et al. Enlargement of heat-electricity ratio for flexibility operation in a large-scale extraction condensing turbine system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095.
    [15]
    王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展 [J]. 华电技术, 2020, 42(4): 64-71. DOI: 10.3969/j.issn.1674-1951.2020.04.010.

    WANG J X, ZHANG S Q, ZHANG H W, et al. Progress on the peak load regulation, frequency regulation and energy storage technologies for coal-fired power plants [J]. Huadian Technology, 2020, 42(4): 64-71. DOI: 10.3969/j.issn.1674-1951.2020.04.010.
    [16]
    陈海平. 热力发电厂 [M]. 北京: 中国电力出版社, 2018.

    CHEN H P. Thermal power plant [M]. Beijing: China Electric Power Press, 2018.
  • Related Articles

    [1]ZHOU Jiankeng, LIU Jing, LÜ Jinpeng, ZHONG Longchun. Engineering Application of Heating Transformation Technology for Large Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 134-139. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.016
    [2]Yu LIU. Case Analysis of Heating Reconstruction Project of Coal Fired Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 97-101. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.016
    [3]Jun LI, Peiwang ZHU, Hui WANG, Xiaolong QIU. Flexible Modification Technology and Application Prospect of Thermal Power Unit Based on High Temperature Molten Salt Heat Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 63-70. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.009
    [4]Yonggang FAN, Zhong WANG, Jin ZHU, Huanxing FU, Changshan CHEN. Research on Selection of Heating Extraction Point for H Class Gas-Steam Combined Cycle Unit in Zengcheng, Guangzhou[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(2): 11-16. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.002
    [5]Shi Tao, Wu Afeng, FAN Xiaoru, HUO Peiqiang. Analysis on Single or Double Row Fan Configuration for a 350 MW Heat Supply Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 59-63. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.009
    [6]Weike LI. Research on Thermal Efficiency of Advanced Utilization Systems of Boiler Tail Flue Gas Heat Based on the Equivalent Enthalpy Drop Theory[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(1): 86-91. DOI: 10.16516/j.gedi.issn2095-8676.2018.01.014
    [7]ZHONG Weilong. Feasibility Study on FW-Pump Steam Drive Turbine Exhaust Heating Technology[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(S1): 28-30. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.006
    [8]Hailin GE, Haoyong CHEN, Fei LIU. Optimization of District Electricity and Heating System Based on Genetic Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(1): 25-30,37. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.004
    [9]PEI Shun, WANG Xiaoxiong. Design of Heating Media Flow Measurement for Thermal Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(S1): 35-38,50. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.009
    [10]Lincun LI. Design of Industrial Heat-supply Reformation for Condensing Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 62-65. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.012
  • Cited by

    Periodical cited type(2)

    1. 张石凯,程硕,黄庆,周建,朱为东,唐寅. 某燃气轮机电厂启动全过程无硝黄烟排放操作方法. 南方能源建设. 2024(04): 144-155 . 本站查看
    2. 由希江,刘敏,谢舒慎,王欣瑶,蒋佳月,魏书洲. 区域性大型燃煤机组供热改造研究. 内蒙古电力技术. 2024(06): 88-94 .

    Other cited types(1)

Catalog

    Corresponding author: XU Weixuan, xuweixuan1987@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (705) PDF downloads (86) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return