Advanced Search
SHAO Jianlin, ZHENG Minghui, GUO Chenghao, YAN Mengdi, XIA Ziqing, XU Hongpeng, WEI Shuzhou. Application Analysis of Energy Storage Technology for Coal-Fired Combined Heat and Power Generation Under Carbon Peak and Neutrality Goal[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 102-110. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.012
Citation: SHAO Jianlin, ZHENG Minghui, GUO Chenghao, YAN Mengdi, XIA Ziqing, XU Hongpeng, WEI Shuzhou. Application Analysis of Energy Storage Technology for Coal-Fired Combined Heat and Power Generation Under Carbon Peak and Neutrality Goal[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 102-110. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.012

Application Analysis of Energy Storage Technology for Coal-Fired Combined Heat and Power Generation Under Carbon Peak and Neutrality Goal

More Information
  • Received Date: May 14, 2022
  • Revised Date: May 20, 2022
  • Accepted Date: May 20, 2022
  • Available Online: September 25, 2022
  •   Introduction  The goal of "carbon peak and neutrality" will require profound changes in the existing energy structure. Improving the flexible adjustment capabilities of the original coal-fired cogeneration units is one of the essential elements in ensuring the safe grid connection of new energy power.
      Method  This paper reviewed the flexible adjustment requirements of the coal-fired cogeneration system, the current status of potential energy storage applications, and the development direction of coupled energy storage technology.
      Result  It is concluded that the deep "thermoelectric decoupling" is still the key to improving the coal-burning cogeneration system. Secondly, to meet the "source-charge" matching, energy storage technology will play an essential role in the coal-fired cogeneration system, among which energy storage technology with potential application mainly includes heat storage, electricity storage, and flywheel energy storage.
      Conclusion  Finally, according to the application characteristics of coupled energy storage technology for coal-fired cogeneration units, the paper puts forward suggestions on the aging of energy storage performance, absorption of new energy, long-term change of thermal power load in the expansion area, economic analysis of initial investment, and payback period and relevant issues needing attention.
  • [1]
    黄畅, 张攀, 王卫良, 等. 燃煤发电产业升级支撑我国节能减排与碳中和国家战略 [J]. 热力发电, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004.

    HUANG C, ZHANG P, WANG W L, et al. Coal-fired power generation industry upgrade to support China's energy conservation and carbon neutral national strategy [J]. Thermal Power Generation, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004.
    [2]
    方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展 [J]. 华电技术, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008.

    FANG X, PENG X F, ZHANG K, et al. Research progress of cold-end waste energy heating retrofit in coal-fired cogeneration systems [J]. Huadian Technology, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008.
    [3]
    王金星, 卓建坤, 李菁, 等. 适应燃煤电厂灵活调峰的安全改造技术探讨 [C]. 北京能源与环境学会. 2018火电灵活性改造及深度调峰技术交流研讨会论文集. 北京能源与环境学会: 北京中能联创信息咨询有限公司, 2018: 31-37.
    [4]
    张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111.

    ZHANG Y, WEI S Z, REN X W, et al. Study on the heating scheme of wind power-extraction condensing unit coupled system [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111.
    [5]
    王金星, 郝剑, 刘畅, 等. 抽凝机组热电联产系统中扩大热电负荷比的灵活性研究 [J]. 热力发电, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095.

    WANG J X, HAO J, LIU C, et al. Study on the flexibility of expanding cogeneration load ratio in pumped condensing unit cogeneration system [J]. Thermal Power Generation, 2020, 49(12): 41-50. DOI: 10.19666/j.rlfd.202002095.
    [6]
    天罡, 刘立华, 黄智, 等. 350 MW机组低压缸切除供热改造方案及调峰性能分析 [J]. 汽轮机技术, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014.

    TIAN G, LIU L H, HUANG Z, et al. Reconstruction scheme of removing low pressure cylinder and heating for 350 MW unit analysis of peak regulation performance [J]. Turbine Technology, 2019, 61(6): 457-460. DOI: 10.3969/j.issn.1001-5884.2019.06.014.
    [7]
    刘双白, 张晶, 吴昕, 等. 320 MW机组低压缸零出力性能分析及应用研究 [J]. 中国电力, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053.

    LIU S B, ZHANG J, WU X, et al. Performance analysis and application study of zero output of low pressure cylinder in 320 MW unit [J]. Electric Power, 2021, 54(5): 213-220. DOI: 10.11930/j.issn.1004-9649.202101053.
    [8]
    GE W C, LIU D B, DENG G N, et al. Optimal dispatching strategy in the domain with energy storage and heat storage taking into account deep regulation of thermal power plants [J]. IOP Conference Series:Earth and Environmental Science, 2021, 675(1): 012145. DOI: 10.1088/1755-1315/675/1/012145.
    [9]
    TAN K M, BABU T S, RAMACHANDARAMURTHY V K, et al. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration [J]. Journal of Energy Storage, 2021, 39: 102591. DOI: 10.1016/j.est.2021.102591.
    [10]
    何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283.

    HE L X, LI W Y. Simulation analysis of primary frequency regulation process of flywheel energy storage assisted thermal power units [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283.
    [11]
    HAMIDPOUR H, AGHAEI J, PIROUZI S, et al. Flexible, reliable, and renewable power system resource expansion planning considering energy storage systems and demand response programs [J]. IET Renewable Power Generation, 2019, 13(11): 1862-1872. DOI: 10.1049/iet-rpg.2019.0020.
    [12]
    YUAN J H, NA C N, LEI Q, et al. Coal use for power generation in China [J]. Resources, Conservation and Re-cycling, 2018, 129: 443-453. DOI: 10.1016/j.resconrec.2016.03.021.
    [13]
    张兴, 阮鹏, 张柳丽, 等. 飞轮储能在华中区域火电调频中的应用分析 [J]. 储能科学与技术, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277.

    ZHANG X, RUAN P, ZHANG L L, et, al. Analysis of the application of flywheel energy storage in the frequency regulation of thermal power in central China [J]. Energy Storage Science and Technology, 2021, 10(5): 1694-1700. DOI: 10.19799/j.cnki.2095-4239.2021.0277.
    [14]
    陈银丽. 热电联产的供热运行调节方式及热电分产能源效率对比 [J]. 低碳世界, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033.

    CHEN Y L. Heating operation regulation of cogeneration and comparison of energy efficiency of cogeneration [J]. Low Carbon World, 2020, 10(1): 54-55. DOI: 10.3969/j.issn.2095-2066.2020.01.033.
    [15]
    王金星. 大型燃煤热电联产系统研究现状和展望 [J]. 华北电力大学学报(自然科学版), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12.

    WANG J X. Research status and prospect for large coal-fired combined heat and power generation system [J]. Journal of North China Electric Power University(Natural Science Edition), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12.
    [16]
    郭海涛, 刘力, 王静怡. 2020年中国能源政策回顾与2021年调整方向研判 [J]. 国际石油经济, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007.

    GUO H T, LIU L, WANG J Y. Review of China's energy policy in 2020 and study of adjustment direction in 2021 [J]. International Petroleum Economics, 2021, 29(2): 53-61. DOI: 10.3969/j.issn.1004-7298.2021.02.007.
    [17]
    刘晓龙, 崔磊磊, 李彬, 等. 碳中和目标下中国能源高质量发展路径研究 [J]. 北京理工大学学报(社会科学版), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522.

    LIU X L, CUI L L, LI B, et al. Study on the path of China's energy quality development under the carbon neutrality target [J]. Journal of Beijing University of Technology (Social Science Edition), 2021, 23(3): 1-8. DOI: 10.15918/j.jbitss1009-3370.2021.7522.
    [18]
    高虎. “双碳”目标下中国能源转型路径思考 [J]. 国际石油经济, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001.

    GAO H. China's energy transformation under the targets of peaking carbon emissions and carbon neutral [J]. International Petroleum Economics, 2021, 29(3): 1-6. DOI: 10.3969/j.issn.1004-7298.2021.03.001.
    [19]
    杨挺, 于亚利, 张亚健, 等. 计及热电耦合的太阳能联产系统功率协调控制 [J]. 电网技术, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391.

    YANG T, YU Y L, ZHANG Y J, et al. Coordination control for integrated solar combined cycle with thermoelectric coupling [J]. Power System Technology, 2020, 44(9): 3433-3440. DOI: 10.13335/j.1000-3673.pst.2019.1391.
    [20]
    NURDAN BURGU, Haluk GÖZDE, M Cengiz TAPLAMACIOĞLU. Efficiency optimization of combined heat and power system integrated with renewable energy for a hospital [J]. International Journal of Multidisciplinary Studies and Innovative Technologies, 2019, 3(1): 76-81.
    [21]
    KANG S S, LI H Q, LIU L F, et al. Exergy analysis of a novel CHP–GSHP coupling system [J]. Applied Thermal Engineering, 2016, 93: 308-314. DOI: 10.1016/j.applthermaleng.2015.09.039.
    [22]
    MCDANIEL B, KOSANOVIC D. Modeling of combined heat and power plant performance with seasonal thermal energy storage [J]. Journal of Energy Storage, 2016, 7: 13-23. DOI: 10.1016/j.est.2016.04.006.
    [23]
    于波, 沈啸轩. 浅谈基于混合储能的光伏发电并网系统的能量管理及协调控制 [J]. 中国设备工程, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118.

    YU B, SHEN X X. Introduction to energy management and coordinated control of grid-connected PV power generation system based on hybrid energy storage [J]. China Plant Engineering, 2021(13): 194-195. DOI: 10.3969/j.issn.1671-0711.2021.13.118.
    [24]
    汪翔, 陈海生, 徐玉杰, 等. 储热技术研究进展与趋势 [J]. 科学通报, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663.

    WANG X, CHEN H S, XU Y J. Research progress and trends in thermal storage technology [J]. Chinese Science Bulletin, 2017, 62(15): 1602-1610. DOI: 10.1360/N972016-00663.
    [25]
    李廷贤, 李卉, 闫霆, 等. 大容量热化学吸附储热原理及性能分析 [J]. 储能科学与技术, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008.

    LI T X, LI H, YAN T, et al. Principle and performance analysis of large capacity thermochemical adsorption thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 236-243. DOI: 10.3969/j.issn.2095-4239.2014.03.008.
    [26]
    李磊. 熔盐储热技术在光热电站中的应用 [J]. 能源与环境, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012.

    LI L. Application of molten salt thermal storage technology in solar thermal power plants [J]. Energy and Environment, 2018(5): 26-28. DOI: 10.3969/j.issn.1672-9064.2018.05.012.
    [27]
    周宇涵. 熔盐蓄热供热技术研究与示范项目 [J]. 区域供热, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023.

    ZHOU Y H. Research and demonstration project of molten salt heat storage heating technology [J]. District Heating, 2021(3): 129-133. DOI: 10.16641/j.cnki.cn11-3241/tk.2021.03.023.
    [28]
    徐治国, 赵长颖, 纪育楠, 等. 中低温相变蓄热的研究进展 [J]. 储能科学与技术, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02.

    XU Z G, ZHAO C Y, JI Y N, et al. Research progress of medium and low temperature phase change thermal storage [J]. Energy Storage Science and Technology, 2014, 3(3): 179-190. DOI: 10.3969/j.issn.2095-4239.2014.03.02.
    [29]
    张永锋, 俞越, 张宾, 等. 铅酸电池现状及发展 [J]. 蓄电池, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007.

    ZHANG Y F, YU Y, ZHANG B, et al. Current status and development of lead-acid batteries [J]. Chinese LABAT Man, 2021, 58(1): 27-31. DOI: 10.16679/j.cnki.21-1121.2021.01.007.
    [30]
    POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: materials and devices [J]. Journal of Energy Storage, 2019, 21: 801-825. DOI: 10.1016/j.est.2019.01.010.
    [31]
    RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology [J]. Nano Energy, 2018, 52: 441-473. DOI: 10.1016/j.nanoen.2018.08.013.
    [32]
    张明勋, 丛鹏, 刘光辉. 电池储能技术在电力系统中的应用 [J]. 通信电源技术, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185.

    ZHANG M X, CONG P, LIU G H. Application of battery energy storage technology in power systems [J]. Telecom Power Technology, 2020, 37(11): 121-123. DOI: 10.3969/j.issn.1008-9772.2018.05.185.
    [33]
    鞠立华. 飞轮储能系统机电耦合非线性动力学研究 [D]. 南京: 东南大学, 2005. DOI: 10.7666/d.y943415.

    JU L H. Study of electromechanical coupling nonlinear dynamics of flywheel energy storage system [D]. Nanjing: Southeast University, 2005. DOI: 10.7666/d.y943415.
    [34]
    戴兴建, 卫海岗, 沈祖培. 储能飞轮支承系统进动模态阻尼研究 [J]. 振动工程学报, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020.

    DAI X J, WEI H G, SHEN Z P. Study on the damping of energy storage flywheel support system into the dynamic mode [J]. Journal of Vibration Engineering, 2002(1): 102-105. DOI: 10.3969/j.issn.1004-4523.2002.01.020.
    [35]
    刘付成, 李结冻, 李延宝, 等. 磁悬浮储能飞轮技术研究及应用示范 [J]. 上海节能, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005.

    LIU F C, LI J D, LI Y B, et al. Research and application demonstration of magnetic levitation energy storage flywheel technology [J]. Shanghai Energy Conservation, 2017(2): 80-84. DOI: 10.13770/j.cnki.issn2095-705x.2017.02.005.
    [36]
    詹三一, 唐跃进, 李敬东, 等. 超导磁悬浮飞轮储能的基本原理和发展现状 [J]. 电力系统自动化, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017.

    ZHAN S Y, TANG Y J, LI J D. The basic principle and development status of superconducting magnetic levitation flywheel energy storage [J]. Automation of Electric Power Systems, 2001(16): 67-72. DOI: 10.3321/j.issn:1000-1026.2001.16.017.
    [37]
    王睿佳. 飞轮储能在电力系统的应用和发展前景 [J]. 中国电业, 2021(5): 21-23.

    WANG R J. Application and development prospect of flywheel energy storage in power system [J]. China Electric Power, 2021(5): 21-23.
    [38]
    牟春华, 兀鹏越, 孙钢虎, 等. 火电机组与储能系统联合自动发电控制调频技术及应用 [J]. 热力发电, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053.

    MOU C H, WU P Y, SUN G H, et al. AGC frequency modulation technology and application for combination of thermal power unit and energy storage system [J]. Thermal Power Generation, 2018, 47(5): 29-34. DOI: 10.19666/j.rlfd.201803053.
    [39]
    隋云任, 梁双印, 黄登超, 等. 飞轮储能辅助燃煤机组调频动态过程仿真研究 [J]. 中国电机工程学报, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921.

    SUI Y R, LIANG S Y, HUANG D C, et al. Simulation study on the dynamic process of frequency regulation of flywheel energy storage assisted coal-fired units [J]. Proceedings of the CSEE, 2020, 40(8): 2597-2606. DOI: 10.13334/j.0258-8013.pcsee.190921.
    [40]
    马成龙, 隋云任. 飞轮储能系统辅助调频的参数配置和经济性分析 [J]. 节能, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009.

    MA C L, SUI Y R. Parameter configuration and economic analysis of auxiliary frequency regulation of flywheel energy storage system [J]. Energy Conservation, 2020, 39(10): 25-29. DOI: 10.3969/j.issn.1004-7948.2020.10.009.
    [41]
    崔杨, 杨志文, 仲悟之, 等. 基于成本最优的含储热光热电站与火电机组联合出力日前调度 [J]. 电力自动化设备, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011.

    CUI Y, YANG Z W, ZHONG W Z, et al. Day-ahead dispatch for output of combined CSP with thermal storage system and thermal power units based on minimized operation cost [J]. Electric Power Automation Equipment, 2019, 39(2): 71-77. DOI: 10.16081/j.issn.1006-6047.2019.02.011.
    [42]
    郑明. 1 000 MW火电机组汽轮机控制系统分析与设计 [D]. 北京: 华北电力大学(北京), 2017. DOI: 10.7666/d.Y3262993.

    ZHENG M. Analysis and design of 1 000 MW coal fired steam turbine control system [D]. Beijing: North China Electric Power University(Beijing), 2017. DOI: 10.7666/d.Y3262993.
  • Related Articles

    [1]LI Yafei, ZHANG Yangxin, ZHANG Hai. Comprehensive Application and Progress of Energy Storage Technologies on the Generation Side[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2025-016
    [2]LI Zhuoyan, TU Hong, DING Yi, XU Yiming. Application Analysis of Electrochemical Model Based on Alkaline Water Electrolyzer[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(3): 115-123. DOI: 10.16516/j.ceec.2024-031
    [3]WANG Boni, WANG Feng, GE Hangcheng, HUANG Fang, SANG Xiaozhuo, ZHANG Min. Analysis of Key Technologies and Applications of Meteorological Service for Offshore Wind Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 65-74. DOI: 10.16516/j.ceec.2024-126
    [4]SUN Haocheng, WEI Houjun, HU Jun, CHEN Xi, WANG Yunfang, HAN Yuxin, LIU Chang. Research on Application of Electrochemical Energy Storage Technology in Thermal Power Plants[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(4): 63-69. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.008
    [5]Jiliang LIN, Zijin WANG, Zuoming WEN, Yong WANG, Zhilei YUAN. Application Analysis of Two Split Small Section Conductor in Icing Reconstruction Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 26-32. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.004
    [6]Jun LI, Peiwang ZHU, Hui WANG, Xiaolong QIU. Flexible Modification Technology and Application Prospect of Thermal Power Unit Based on High Temperature Molten Salt Heat Storage[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 63-70. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.009
    [7]LI Zhaohua. Application Analysis of Optical Transport Network in Guangdong Power Grid[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 155-160. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.035
    [8]ZHAO Manyong, WEN An, JIN Xin, WEI Chengzhi, HUANG Weifang. Analysis of PTN Network 1588 Time Synchronization Test and Application in Electric Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 151-154. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.034
    [9]Zhengjun SHI, Su LIU, Haojun ZHU, Jing DENG, Junjie LI. Application Analysis of Distributed Energy Storage Device in Guangdong Province[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(2): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.02.015
    [10]Xin CHENG. Application Analysis of Load Break Switch in 500 kV Substation[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 115-119. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.022
  • Cited by

    Periodical cited type(9)

    1. 张妍,冷媛,尚楠,梁梓杨,石昊,罗钢. 考虑碳排放需求响应及碳交易的电力系统双层优化调度. 电力建设. 2024(05): 94-104 .
    2. 郭大海,刘广忱,张进,蒋华,张建伟,田桂珍,王嫣. 飞轮储能阵列系统协调控制方法综述. 内蒙古电力技术. 2024(04): 56-65 .
    3. 陈倩. 梯级水电站运行调度方式优化策略研究. 电力与能源. 2024(06): 723-725 .
    4. 丁秀香,林伟,陈昆灿,谢会玲. 满足主变N-1的变电站储能定容方法及经济分析. 南方能源建设. 2023(02): 78-85 . 本站查看
    5. 张圆圆,张普森,聂浩,杨凤玲,程芳琴. 火电机组蒸汽工质侧快速变负荷方法研究进展. 洁净煤技术. 2023(06): 49-58 .
    6. 钟莹. 电池储能参与燃煤发电机组AGC辅助服务经济分析. 南方能源建设. 2023(06): 64-70 . 本站查看
    7. 熊璟睿. 不同风速下双通道燃烧器的着火特性研究. 当代化工研究. 2023(22): 38-40 .
    8. 文婷,陈雷,曾鹏骁,刘云. 广东新型储能配套政策建议. 南方能源建设. 2022(04): 70-77 . 本站查看
    9. 王虎. “双碳”目标下储能技术的发展及应用. 电力与能源. 2022(06): 469-471+506 .

    Other cited types(2)

Catalog

    Corresponding author: WEI Shuzhou, 16040754@ceic.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1421) PDF downloads (134) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return