Advanced Search
YAN Qi,ZHANG Yanze,CHEN Xiaoyue,et al.A Flange Failure Caused by Field TEV[J].Southern Energy Construction,2022,09(增刊1):83-91.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.013
Citation: YAN Qi,ZHANG Yanze,CHEN Xiaoyue,et al.A Flange Failure Caused by Field TEV[J].Southern Energy Construction,2022,09(增刊1):83-91.. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.013

A Flange Failure Caused by Field TEV

More Information
  • Received Date: October 27, 2021
  • Revised Date: January 13, 2022
  •   Introduction  The transient enclosure voltage (TEV) will threaten the personal safety of the staff and the normal operation of the secondary equipment, and may cause the discharge between the flanges of the GIS enclosure. In order to analyze the spark discharge fault between the flanges of the GIS enclosure when operating the disconnecting switch in a 500 kV substation, a TEV simulation calculation model based on the transmission line theory was proposed, and the suppression measures of the discharge between the flanges caused by TEV were discussed.
      Method  In order to simulate the TEV more accurately, an improved dynamic arc model was constructed using the Cassie-Mayr theory, and the VFTO generation circuit was combined with the TEV calculation circuit, and the VFTO generated by disconnecting switch operation was directly added to the GIS enclosure potential calculation model.
      Result  The simulation results show that, in the worst case, the maximum voltage difference between flanges exceeds the surface flashover voltage of insulating barriers between flanges, which is enough to cause discharge between flanges. Reducing the residual charge on the island side of the disconnecting switch and reducing the inductance of the grounding wire can reduce the amplitude of TEV to varying degrees, but cannot completely suppress the potential difference between the flanges. The use of shorting connectors for bridging can effectively suppress the voltage difference between the flanges and avoid the resulting discharge phenomenon, but it is necessary to verify the selection of the shorting pieces and cancel the original three-phase shorting row to avoid circulation.
      Conclusion  Verified by on-site engineering transformation, the conclusions obtained in this paper are correct and effective, and have great reference significance for preventing such discharge phenomena.
  • YAN Qi,ZHANG Yanze,CHEN Xiaoyue,et al.A Flange Failure Caused by Field TEV[J].Southern Energy Construction,2022,09(增刊1):83-91.

  • [1]
    张重远, 梁贵书, 崔翔, 等.GIS隔离开关操作对二次设备的影响 [J].高电压技术, 2002, 28(2): 5-7.DOI: 10.3969/j.issn.1003-6520.2002.02.003.

    ZHANGZ Y, LIANGG S, CUIX, et al.The effects of operations of the disconnector switch on the secondary circuits in gas insulated substations [J].High Voltage Engineering, 2002, 28(2): 5-7.DOI: 10.3969/j.issn.1003-6520.2002.02.003.
    [2]
    胡榕.特高压交流气体绝缘开关设备的电磁瞬态特性研究 [D].北京: 华北电力大学, 2016.DOI: 10.7666/d.Y3114503.

    HUR.Research on the characteristics of electromagnetic transient generated during switching of disconnector in acultra high voltage gas insulated switchgear [D].Beijing: North China Electric Power University, 2016.DOI: 10.7666/d.Y3114503.
    [3]
    FORDG L, GEDDESL A.Transient ground potential rise in gas insulated substations-assessment of shock hazard [J].IEEE Transactions on Power Apparatus & Systems, 1982, PAS-101(10): 3620-3629.DOI: 10.1109/TPAS.1982.317047.
    [4]
    FUJIMOTON, DICKE P, BOGGSS A, et al.Transient ground potential rise in gas insulated substations-experimental studies [J].Power Engineering Review, IEEE, 1982, PER-2(10): 21-22.DOI: 10.1109/TPAS.1982.317033.
    [5]
    DICKE P, FUJIMOTON, FORDG L, et al.Transient ground potential rise in gas-insulated substations-problem identification and mitigation [J].IEEE Transactions on Power Apparatus & Systems, 1982, PAS-101(10): 3610-3619.DOI: 10.1109/TPAS.1982.317046.
    [6]
    王娜, 林莘, 徐建源, 等.特高压GIS变电站中快速暂态过电压仿真及其特性分析 [J].高电压技术, 2012, 38(12): 3310-3315.DOI: 10.3969/j.issn.1003-6520.2012.12.032.

    WANGN, LINS, XUJ Y, et al.Simulation and characteristics analysis of very fast transient overvoltage in GIS insulated substation with ultra high voltage [J].High Voltage Engineering, 2012, 38(12): 3310-3315.DOI: 10.3969/j.issn.1003-6520.2012.12.032.
    [7]
    王娜.特高压GIS中隔离开关操作引起的电磁暂态问题研究 [D].沈阳: 沈阳工业大学, 2013.

    WANGN.Study on electromagnetic transient problems caused by isolating switch operation in UHV GIS [D].Shenyang: Shenyang University of Technology, 2013.
    [8]
    林莘, 李爽, 徐建源, 等.超高压GIS暂态壳体电压的仿真研究 [J].高压电器, 2011, 47(3): 12-17+25.DOI: 10.13296/j.1001-1609.hva.2011.03.003.

    LINS, LIS, XUJ Y, et al.Simulation of transient enclosure voltage in EHV GIS [J].High Voltage Apparatus, 2011, 47(3): 12-17+25.DOI: 10.13296/j.1001-1609.hva.2011.03.003.
    [9]
    FESERW, PFAFFW.A potential free spherical sensor for the measurement of transient electric fields [J].IEEE Transactions on Power Apparatus and Systems, 1984, PAS-103(10): 2904-2911.DOI: 10.1109/TPAS.1984.318292.
    [10]
    CHRISTENSENL H.Design, construction, and test of a passive optical prototype high voltage instrument transformer [J].Power Delivery IEEE Transactions on, 1995, 10(3): 1332-1337.DOI: 10.1109/61.400913.
    [11]
    胡榕, 崔翔, 陈维江, 等.特高压气体绝缘开关设备瞬态外壳电压特性的试验研究 [J].中国电机工程学报, 2014, 34(29): 5244-5258.DOI: 10.13334/j.0258-8013.pcsee.2014.29.025.

    HUR, CUIX, CHENW J, et al.Experimental research on the characteristics of transient enclosure voltage in ultra high voltage gas insulated switchgear [J].Proceedings of the CSEE, 2014, 34(29): 5244-5258.DOI: 10.13334/j.0258-8013.pcsee.2014.29.025.
    [12]
    胡榕, 崔翔, 陈维江, 等.特高压气体绝缘开关设备中瞬态外壳电压测量装置的研制 [J].中国电机工程学报, 2015, 35(23): 6235-6245.DOI: JournalArticle/5b3c202ec095d70f00a8e4fa.

    HUR, CUIX, CHENW J, et al.Development of the measuring device of transient enclosure voltage in ultra high voltage gas insulated switchgear [J].Proceedings of the CSEE, 2015, 35(23): 6235-6245.DOI: JournalArticle/5b3c202ec095d70f00a8e4fa.
    [13]
    HUR, CUIX, ZHANGW D, et al.Transient enclosure voltage (TEV) measurement system of UHV GIS and TEV statistical characterization [C]//IEEE.International Symposium on Electromagnetic Compatibility, Rome, Italy, 2012.Piscataway, NJ: IEEE, 2012: 1-6. DOI: 10.1109/EMCEurope.2012.6396743.
    [14]
    SHIMODAN, TAGUCHIK, NEMOTOT, et al.Suppression of very fast transient overvoltages across insulating flange of 1 000 kV GIS [C]// IEEE.Eleventh International Symposium on High-Voltage Engineering(ISH99), London, UK, 1999.Piscataway, NJ: IEEE, 1999: 2.415.P1-2.418.P1.DOI: 10.1049/cp: 19990680.
    [15]
    ZHAOJ, ZHANGJ G, LIUZ H, et al.Measurement of TEV of 1 000 kV UHV gas insulated switchgear [C]//IEEE, The Seventh Asia-Pacific Conference on Environmental Electromagnetics (CEEM' 2015), Hangzhou, China, 2015.Piscataway, NJ: IEEE, 2015: 390-392.DOI: 10.1109/CEEM.2015.7368693.
    [16]
    胡蓉, 陈飞.架空进出线的220 kV GIS紧凑型户内布置方案研究 [J].南方能源建设, 2017, 4(增刊1): 73-77+83.DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.014.

    HUR, CHENF.220 kV GIS compact indoor layout research with overhead line [J].Southern Energy Construction, 2017, 4(Supp.1): 73-77+83.DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.014.
    [17]
    MOREIRAD C, NUNESM, MOREIRAD, et al.Analysis of VFTO during the failure of a 550 kV gas-insulated substation [J].Electric Power Systems Research, 2020, 189October (4):106825.DOI: 10.1016/j.epsr.2020.106825.
  • Related Articles

    [1]SHI Liuti, CHEN Yunhui, TU Jiahuang. Impact of Wake Interference Suppression Strategies on the Aerodynamic Performance of Twin Wind Turbines[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 79-96. DOI: 10.16516/j.ceec.2024-311
    [2]LI Zhenhan, LI Hua, BAO Xiaohua, GAO Ge. Optimization of Electromagnetic Field Distribution of 120 kA Pulse Inductor in Oscillation Discharge Circuit[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(3): 23-35. DOI: 10.16516/j.ceec.2024.3.03
    [3]Jizhu DONG. Analysis on the Collapse and Improvement Measures of Tubular Demister of Desulfurization Tower in Thermal Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S1): 56-62. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.009
    [4]Tianshun LIN. A Physical Defoaming Scheme for Seawater Circulating Water Discharge[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S2): 119-122. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.019
    [5]Cheng LEI, Yu HUANG, Jinrui TANG. Research on Measures to Improve the Transmission Benefit of West-to-East Power Transmission in Southern Region[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(4): 48-53. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.007
    [6]Mingjun BI, Jinchao LIU, Rong SU, Hongqing WANG, Sha LIU. Experimental Study on Scour Characteristics and Protection Measures for Monopile on Sandy Coast[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 103-111. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.016
    [7]BAI Jinchuan, DU Ying. Research on Suppression Inrush Current Technology in the Control of Three-phase Interconnected Circuit Breaker[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 58-64. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.011
    [8]Bo LIU, Jinchao LIU, Zhaorong MA, Xiaohua HE, Guokai YUAN. Laboratory Research on Sandy Deposit Liquefaction Suppression Under Wave Loading[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(4): 100-107,112. DOI: 10.16516/j.gedi.issn2095-8676.2017.04.019
    [9]Jiaming LIANG, Qian ZHOU. An Optimized Solution for Discharging Coal Hopper Wagon in BIH[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 137-140. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.029
    [10]WU Peifeng, JIN Xiaohua, QIU Hao. Research on Anti-wind Standards and Measures for Reinforced Concrete Pole[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 218-221. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.048

Catalog

    Yu WANG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(9)  /  Tables(5)

    Article Metrics

    Article views (508) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return