Advanced Search
FENG Zhaoyang. Configuration and Optimal Application of Gasification Equipment in the LNG Emergency Reserve Center[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 120-131. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.014
Citation: FENG Zhaoyang. Configuration and Optimal Application of Gasification Equipment in the LNG Emergency Reserve Center[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 120-131. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.014

Configuration and Optimal Application of Gasification Equipment in the LNG Emergency Reserve Center

More Information
  • Received Date: May 04, 2023
  • Revised Date: June 09, 2023
  • Available Online: December 25, 2023
  •   Introduction  The technical analysis and investigation on the application of process equipment in the gasification area of the LNG (Liquefied Natural Gas) emergency reserve center, is carried out to solve the problems of frosting and icing in the operation of a single grouping of ambient air vaporizers, in the gasification area of Xi'an Yinzhen LNG emergency reserve center.
      Method  The LNG gasification technology in use mainly included ambient air vaporizing and water-bath vaporizing in Chinese Mainland. When the ambient air vaporizer was operated with high load and in low temperature seasons, it was easy to fog around the equipment, and the equipment surface would always be covered with frost and ice but the water-bath vaporizer did not have this phenomenon. After the investigation and comparison of the operation of gasification equipment in various station gasification process areas, such as LNG reserve centers and coastal terminals in recent years, the independent LNG water bath vaporizer could realize the gasification production without frost, ice and fog on the surface of the equipment in engineering; The combined operation system of the water-bath vaporizer and the ambient air vaporizer could combine and optimize the LNG gasification, which could not only obtain the heat energy contained in the air for LNG gasification production, but also eliminate the impact of low-temperature fogging, ice and frost on LNG gasification production.
      Result  The gasification process in Chinese Mainland of LNG with large reserve can smoothly complete the production without being affected by low temperatures.
      Conclusion  To build a green energy system, based on the formation of a new energy network, high-efficiency energy transmission, distribution, storage and conversion technologies as well as the integration and complementary development of the natural gas, wind, solar, water, hydrogen, and other renewable clean energies for gas power generation, have important supporting roles in perfecting energy storage engineering and technology, thus the optimization of large-scale LNG gasification technology is an important engineering practice.
  • [1]
    严乐. 空温式气化器综述 [J]. 云南化工, 2019, 46(8): 184-185, 188. DOI: 10.3969/j.issn.1004-275X.2019.09.053.

    YAN L. A review of the air-temperature gasifier [J]. Yunnan chemical technology, 2019, 46(8): 184-185, 188. DOI: 10.3969/j.issn.1004-275X.2019.09.053.
    [2]
    黄中峰, 王云航, 邹伟. LNG空温式气化器结霜机理及控制技术 [J]. 煤气与热力, 2021, 41(8): 19-23, 36. DOI: 10.13608/j.cnki.1000-4416.2021.08.017.

    HUANG Z F, WANG Y H, ZOU W. Frosting mechanism and control technology of LNG air temperature vaporizer [J]. Gas & heat, 2021, 41(8): 19-23, 36. DOI: 10.13608/j.cnki.1000-4416.2021.08.017.
    [3]
    吴晓红, 陈永东, 李志. LNG缠绕管水浴式气化器防结冰分析及对策 [J]. 设备管理与维修, 2014(5): 56-58. DOI: 10.3969/j.issn.1001-0599.2014.05.034.

    WU X H, CHEN Y D, LI Z. Anti-icing analysis and countermeasures of LNG winding tube water bath gasifier [J]. Plant maintenance engineering, 2014(5): 56-58. DOI: 10.3969/j.issn.1001-0599.2014.05.034.
    [4]
    任乐梅, 焦文玲. LNG空温式气化器除霜判定指标及标准研究 [J]. 煤气与热力, 2020, 40(11): 21-27. DOI: 10.13608/j.cnki.1000-4416.2020.11.005.

    REN L M, JIAO W L. Research on defrosting judgment index and standard of LNG ambient air temperature vaporizer [J]. Gas & heat, 2020, 40(11): 21-27. DOI: 10.13608/j.cnki.1000-4416.2020.11.005.
    [5]
    梅鹏程, 邓春锋, 邓欣. LNG气化器的分类及选型设计 [J]. 化学工程与装备, 2016(5): 65-70.

    MEI P C, DENG C F, DENG X. Classification and selection design of LNG vaporizer [J]. Chemical engineering & equipment, 2016(5): 65-70.
    [6]
    黄宇, 张超, 陈海平. 液化天然气接收站关键设备和材料国产化进程研究 [J]. 现代化工, 2019, 39(4): 13-17. DOI: 10.16606/j.cnki.issn0253-4320.2019.04.003.

    HUANG Y, ZHANG C, CHEN H P. China's progress in local manufacture of key equipment and materials for LNG terminal [J]. Modern chemical industry, 2019, 39(4): 13-17. DOI: 10.16606/j.cnki.issn0253-4320.2019.04.003.
    [7]
    刘世俊, 郭超, 雷江震, 等. 浸没燃烧式LNG气化器燃烧器的研究 [J]. 城市燃气, 2016(5): 9-13. DOI: 10.3969/j.issn.1671-5152.2016.05.002.

    LIU S J, GUO C, LEI J Z, et al. Study on burner of LNG submerged combustion vaporizer [J]. Urban gas, 2016(5): 9-13. DOI: 10.3969/j.issn.1671-5152.2016.05.002.
    [8]
    裘栋. LNG项目气化器的选型 [J]. 化工设计, 2011, 21(4): 19-22,6. DOI: 10.3969/j.issn.1007-6247.2011.04.005.

    QIU D. Type selection of evaporator for LNG project [J]. Chemical engineering design, 2011, 21(4): 19-22,6. DOI: 10.3969/j.issn.1007-6247.2011.04.005.
    [9]
    尹星懿. 浸没燃烧式气化器原理分析及方案优化 [J]. 城市燃气, 2014(2): 9-12. DOI: 10.3969/j.issn.1671-5152.2014.02.002.

    YIN X Y. Principle analysis and scheme optimization of immersion combustion gasifier [J]. Urban gas, 2014(2): 9-12. DOI: 10.3969/j.issn.1671-5152.2014.02.002.
    [10]
    中华人民共和国国务院. 特种设备安全监察条例 [EB/OL]. (2003-03-11) [2021-08-09]. https://www.gov.cn/zhengce/2020-12/26/content_5574590.htm.

    State Council of the PRC. Regulations on the safety supervision of special equipment [EB/OL]. (2003-03-11) [2021-08-09]. https://www.gov.cn/zhengce/2020-12/26/content_5574590.htm
    [11]
    杨信一, 刘筠竹, 李硕. 唐山LNG接收站浸没燃烧式气化器运行优化 [J]. 油气储运, 2018, 37(10): 1153-1157. DOI: 10.6047/j.issn.1000-8241.2018.10.011.

    YANG X Y, LIU Y Z, LI S. Operation optimization of submerged combustion vaporizer in Tangshan LNG receiving station [J]. Oil & gas storage and transportation, 2018, 37(10): 1153-1157. DOI: 10.6047/j.issn.1000-8241.2018.10.011.
    [12]
    荀海晶. 天津LNG项目气化器选型分析 [J]. 中国造船, 2014, 55(增刊2): 138-143.

    XUN H J. Selection of vaporizer in Tianjin LNG project [J]. Shipbuilding of China, 2014, 55(Suppl. 2): 138-143.
    [13]
    陈军, 孔令广. 浸没燃烧式汽化器的分析优化 [J]. 管道技术与设备, 2012(4): 55-57. DOI: 10.3969/j.issn.1004-9614.2012.04.020.

    CHEN J, KONG L G. Analysis and optimization of submerged combustion vaporizer [J]. Pipeline technique and equipment, 2012(4): 55-57. DOI: 10.3969/j.issn.1004-9614.2012.04.020.
    [14]
    彭超, 刘筠竹. LNG接收站冬季气化器联运方案 [J]. 化工管理, 2014(33): 145. DOI: 10.3969/j.issn.1008-4800.2014.33.121.

    PENG C, LIU Y Z. Gasifier transport scheme in winter for LNG receiving station [J]. Chemical engineering management, 2014(33): 145. DOI: 10.3969/j.issn.1008-4800.2014.33.121.
    [15]
    夏硕, 林剑彬, 董顺, 等. ORV和SCV冬季运行经验分析及运行优化 [J]. 石化技术, 2017, 24(3): 210. DOI: 10.3969/j.issn.1006-0235.2017.03.169.

    XIA S, LIN J B, DONG S, et al. Analysis and operation optimization of ORV and SCV winter operation experience [J]. Petrochemical industry technology, 2017, 24(3): 210. DOI: 10.3969/j.issn.1006-0235.2017.03.169.
    [16]
    吕俊, 王蕾. 浙江LNG接收站项目气化器选型及系统优化 [J]. 天然气工业, 2008, 28(2): 132-135. DOI: 10.3787/j.issn.1000-0976.2008.02.039.

    LÜ J, WANG L. Selection of vaporizer types and optimization of vaporizer system in LNG receiving terminal project of Zhejiang province [J]. Natural gas industry, 2008, 28(2): 132-135. DOI: 10.3787/j.issn.1000-0976.2008.02.039.
    [17]
    付子航, 宋坤, 单彤文. 空气热源式气化技术在大型LNG接收终端的应用 [J]. 天然气工业, 2012, 32(8): 100-104. DOI: 10.3787/j.issn.1000-0976.2012.08.022.

    FU Z H, SONG K, SHAN T W. Application of ambient air based heating vaporizers in large LNG receiving terminals [J]. Natural gas industry, 2012, 32(8): 100-104. DOI: 10.3787/j.issn.1000-0976.2012.08.022.
    [18]
    氢启未来网. 液态固态储氢技术取得突破, 储运成本有望大幅下降 [EB/OL]. (2023-04-25). https://baijiahao.baidu.com/s?id=1764114884317659686&wfr=spider&for=pc.

    Hydrogen Kai Future Network. Breakthrough in liquid solid hydrogen storage technology [EB/OL]. (2023-04-25). https://baijiahao.baidu.com/s?id=1764114884317659686&wfr=spider&for=pc.
    [19]
    矫依存. 不同气候分区LNG空温式气化器配置优化研究 [D]. 哈尔滨: 哈尔滨工业大学, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002433.

    JIAO Y C. Optimization of air-temperture gasifier configuration in different climate zones [D]. Harbin: Harbin Institute of Technology, 2020. DOI: 10.27061/d.cnki.ghgdu.2020.002433.
    [20]
    冯道荣, 刘元向, 邓小明, 等. LNG接收站利用电厂温排水的取排水方案探讨 [J]. 南方能源建设, 2022, 9(增刊1): 36-42. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.006.

    FENG D R, LIU Y X, DENG X M, et al. Discussion on the water intake and drainage schemes of LNG terminal using the thermal drainage from power plant [J]. Southern energy construction, 2022, 9(Suppl. 1): 36-42. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.006.
  • Related Articles

    [1]WANG Xingfu, JIANG Jingjiang, LI Qiang. Optimization Research and Application of Boiler Bellows Baffle Actuator[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 88-93. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.014
    [2]Shaokuan CAI. Discussion on Energy Storage Solutions Under the New Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S1): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2022.S1.003
    [3]Fengxiang ZHONG, Zhongyi HE, Peining ZHU, Yadong ZHOU. Application of Optimal Combined Prediction Model for Settlement of Foundation Under Preloading Treatment[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(S1): 140-146. DOI: 10.16516/j.gedi.issn2095-8676.2019.S1.027
    [4]Saizu LIU, Chang HAN, Chenhua GUO. Research on Technical Key, Difficulty and Solution of Smart Distribution Substation[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(S1): 75-80. DOI: 10.16516/j.gedi.issn2095-8676.2019.S1.015
    [5]Xiaoyu WANG. Optimization Design and Application on Photovoltaic Support and Foundation of Flat Concrete Roof[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(1): 81-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.014
    [6]LIU Zijun, JIN Longxing, LUN Zhenjian, CHEN Yongwen, ZENG Yong. Analysis on the Influence of Switch Position Abnormity to Bus Protection and Its Solution Discussion[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 89-94. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.016
    [7]Canshen TAN, Afeng WU. Brief Analysis on Low-temperature Corrosion Solution About Air Preheater of Coal-fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 56-60. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.008
    [8]Ligang LAN, Rui MA, Guangsheng WU. Optimization and Application of Steam Temperature Control System Base on Mechanism Model[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(2): 73-76. DOI: 10.16516/j.gedi.issn2095-8676.2017.02.012
    [9]Jiaming LIANG, Qian ZHOU. An Optimized Solution for Discharging Coal Hopper Wagon in BIH[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 137-140. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.029
    [10]TANG Jian, YANG Ji. Research and Application of UHV Transmission Line Optimization Based on Oblique Photography of UAV[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 203-206. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.045
  • Cited by

    Periodical cited type(7)

    1. 周登科,程龙,张亚平,汤鹏,顾晟,郑开元,何俊生,张雪. 海上升压站机器人智能巡检系统应用分析. 南方能源建设. 2025(01): 116-126 . 本站查看
    2. 石腾,许波峰,李振,陈鹏. 基于数字图像处理的风电机组叶片裂纹损伤识别方法研究. 太阳能学报. 2024(02): 86-94 .
    3. 尹玉,张永,王健,吴国境,苏力德,王超誉. 基于热红外图像的风力机叶片损伤识别方法研究. 太阳能学报. 2022(02): 492-497 .
    4. 全静,杨顺,彭徽. 数字图像处理技术在量化热障涂层热生长氧化层厚度中的应用. 航空动力学报. 2020(10): 2195-2204 .
    5. 张越,张印辉,何自芬. 海上风力发电机叶片裂纹图像分割方法研究. 中国水运. 2019(03): 74-78 .
    6. 臧义柱. 某电力推进船舶主吊舱无法合闸故障分析. 中国水运. 2019(05): 72-74 .
    7. 吴国中,李镇,宋增禄. 风电叶片在线检测技术研究进展. 南京工业职业技术学院学报. 2018(02): 4-8 .

    Other cited types(12)

Catalog

    Corresponding author: FENG Zhaoyang, 406693940@qq.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1053) PDF downloads (127) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return