Advanced Search
XU Zhiqiang, LI Jun, ZHANG Chunlin, HONG Jianfeng. Levelized Net Present Value of Electricity Analysis of Frame Gravity Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-140
Citation: XU Zhiqiang, LI Jun, ZHANG Chunlin, HONG Jianfeng. Levelized Net Present Value of Electricity Analysis of Frame Gravity Energy Storage System[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-140

Levelized Net Present Value of Electricity Analysis of Frame Gravity Energy Storage System

More Information
  • Received Date: May 05, 2024
  • Revised Date: June 28, 2024
  • Accepted Date: July 07, 2024
  •   Introduction  The frame gravity energy storage system has a wide range of application prospects due to its high economic benefits, low system costs, and unrestricted geographical conditions.
      Method  The paper studied the profit variation rules of the frame gravity energy storage system throughout its life cycle in detail by applying the leveled net present value of electricity (LNPVE) model. The paper, based on the net present value of capital flow in gravity energy storage systems, first built a levelized revenue of electricity (LROE) model which includes initial investment, discount rate, feed-in tariff, and government subsidies; then, built the LNPVE model on the basis of the LROE model and the levelized cost of electricity (LCOE) model; and finally explored the changes of LCOE, LROE, LNPVE, total net present value income and total discounted cost when the discount rate, feed-in tariff, service life and charge-discharge efficiency of the system change, to comprehensively consider the impact of different parameters on the economic efficiency of the system.
      Result  The increase in the discount rate, service life, and charge-discharge efficiency of the system will improve the economic efficiency of the system. In addition, as the service life of the system increases, the LNPVE of the system decreases while the total net present value income increases. Therefore, it is more appropriate to comprehensively consider multiple factors when evaluating the economic efficiency of the system.
      Conclusion  The LNPVE model studied here can provide a reference for the construction and profit analysis of frame gravity energy storage systems.
  • [1]
    卢静. 2024年分布式储能系统收益将达到165亿美元 [J]. 中国电力, 2015, 48(9): 23.

    LU J. Revenue from distributed energy storage systems will reach $16.5 billion in 2024 [J]. Electric power, 2015, 48(9): 23.
    [2]
    赫文豪, 李懂文, 杨东杰, 等. 新型重力储能技术研究现状与发展趋势 [J]. 大学物理实验, 2022, 35(5): 1-7. DOI: 10.14139/j.cnki.cn22-1228.2022.05.001.

    HE W H, LI D W, YANG D J, et al. Research and development of novel gravity energy storage technologies [J]. Physical experiment of college, 2022, 35(5): 1-7. DOI: 10.14139/j.cnki.cn22-1228.2022.05.001.
    [3]
    王粟, 肖立业, 唐文冰, 等. 新型重力储能研究综述 [J]. 储能科学与技术, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590.

    WANG S, XIAO L Y, TANG W B, et al. Review of new gravity energy storage [J]. Energy storage science and technology, 2022, 11(5): 1575-1582. DOI: 10.19799/j.cnki.2095-4239.2021.0590.
    [4]
    文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析 [J]. 热力发电, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094.

    WEN J, LIU N, PEI J, et al. Life cycle cost analysis for energy storage technology [J]. Thermal power generation, 2021, 50(8): 24-29. DOI: 10.19666/j.rlfd.202105094.
    [5]
    刘晓辉, 袁康, 白亚奎, 等. 框架式重力储能系统经济性分析 [J]. 分布式能源, 2023, 8(3): 47-53. DOI: 10.16513/j.2096-2185.DE.2308307.

    LIU X H, YUAN K, BAI Y K, et al. Economic analysis of frame gravity energy storage system [J]. Distributed energy, 2023, 8(3): 47-53. DOI: 10.16513/j.2096-2185.DE.2308307.
    [6]
    MUGYEMA M, BOTHA C D, KAMPER M J, et al. Levelised cost of storage comparison of energy storage systems for use in primary response application [J]. Journal of energy storage, 2023, 59: 106573. DOI: 10.1016/j.est.2022.106573.
    [7]
    MOAZZAMI M, MORADI J, SHAHINZADEH H, et al. Optimal economic operation of microgrids integrating wind farms and advanced rail energy storage system [J]. International journal of renewable energy research, 2018, 8(2): 1155-1164. DOI: 10.20508/ijrer.v8i2.7056.g7401.
    [8]
    BERRADA A, EMRANI A, AMEUR A. Life-cycle assessment of gravity energy storage systems for large-scale application [J]. Journal of energy storage, 2021, 40: 102825. DOI: 10.1016/j.est.2021.102825.
    [9]
    何颖源, 陈永翀, 刘勇, 等. 储能的度电成本和里程成本分析 [J]. 电工电能新技术, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045.

    HE Y Y, CHEN Y C, LIU Y, et al. Analysis of cost per kilowatt-hour and cost per mileage for energy storage technologies [J]. Advanced technology of electrical engineering and energy, 2019, 38(9): 1-10. DOI: 10.12067/ATEEE1907045.
    [10]
    祝青, 沈晨姝, 李木子, 等. 大型集中式风电储能系统的配置及收益模式研究 [J]. 电工技术, 2022(17): 4-8. DOI: 10.19768/j.cnki.dgjs.2022.17.002.

    ZHU Q, SHEN C S, LI M Z, et al. Research on configuration and revenue model of large centralized wind energy storage system [J]. Electric engineering, 2022(17): 4-8. DOI: 10.19768/j.cnki.dgjs.2022.17.002.
    [11]
    凌万水, 刘刚, 侯勇. 工业用户配置储能系统的经济收益分析 [J]. 供用电, 2019, 36(8): 54-60. DOI: 10.19421/j.cnki.1006-6357.2019.08.009.

    LING W S, LIU G, HOU Y. Economic income analysis of industrial user's configuring energy storage system [J]. Distribution & utilization, 2019, 36(8): 54-60. DOI: 10.19421/j.cnki.1006-6357.2019.08.009.
    [12]
    易检长, 任中俊, 谢玉军. 不同结算电价对光伏发电项目经济性影响分析 [J]. 建设科技, 2022(10): 86-89. DOI: 10.16116/j.cnki.jskj.2022.10.019.

    YI J C, REN Z J, XIE Y J. Analysis on economic impact on PV power generation projects under different pricing mechanisms [J]. Construction science and technology, 2022(10): 86-89. DOI: 10.16116/j.cnki.jskj.2022.10.019.
    [13]
    张丽娜, 王金梅, 杨国华, 等. 计及电网电价的微网能量优化管理 [J]. 宁夏大学学报(自然科学版), 2020, 41(4): 379-383. DOI: 10.3969/j.issn.0253-2328.2020.04.014.

    ZHANG L N, WANG J M, YANG G H, et al. Micro-grid energy optimization management based on grid electricity price [J]. Journal of Ningxia University (natural science edition), 2020, 41(4): 379-383. DOI: 10.3969/j.issn.0253-2328.2020.04.014.
    [14]
    徐伟, 刘振领, 王华智, 等. 基于LCOE模型的农村光伏系统社会经济效益评价——以北京郊区屋顶分布式光伏项目为例 [J]. 中国农业大学学报, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19.

    XU W, LIU Z L, WANG H Z, et al. Evaluation of socio-economic benefits of rural PV systems based on LCOE model: an example of rooftop distributed PV projects in Beijing suburbs [J]. Journal of China Agricultural University, 2023, 28(9): 208-217. DOI: 10.11841/j.issn.1007-4333.2023.09.19.
    [15]
    白映波, 王兴鹏, 李欣达, 等. 超高海拔地区集中式光伏发电项目的经济与环境效益分析 [J]. 太阳能, 2023(10): 21-29. DOI: 10.19911/j.1003-0417.tyn20230223.01.

    BAI Y B, WANG X P, LI X D, et al. Economic and environmental benefits analysis of centralized PV power generation projects in ultra-high altitude areas [J]. Solar energy, 2023(10): 21-29. DOI: 10.19911/j.1003-0417.tyn20230223.01.
    [16]
    昌敦虎, 田川, 张泽阳, 等. 基于LCOE模型的光伏发电经济效益分析: 以宜昌农村地区光伏扶贫电站项目为例 [J]. 环境科学研究, 2020, 33(10): 2412-2420. DOI: 10.13198/j.issn.1001-6929.2020.08.24.

    CHANG D H, TIAN C, ZHANG Z Y, et al. Economic benefit analysis on photovoltaic power generation with LCOE model: the case of poverty alleviation project in rural areas of Yichang city [J]. Research of environmental sciences, 2020, 33(10): 2412-2420. DOI: 10.13198/j.issn.1001-6929.2020.08.24.
    [17]
    张宇翔, 何海艳, 黄骏飞, 等. 基于平准化度电净现值模型的轨道交通光伏发电储能一体化项目的经济效益分析 [J]. 城市轨道交通研究, 2023, 26(10): 103-108,115. DOI: 10.16037/j.1007-869x.2023.10.018.

    ZHANG Y X, HE H Y, HUANG J F, et al. Economic benefit analysis of rail transit photovoltaic power generation and energy storage integration project based on levelized net present value model [J]. Urban mass transit, 2023, 26(10): 103-108,115. DOI: 10.16037/j.1007-869x.2023.10.018.
    [18]
    WANG H C, WANG X M, FU Z M. Energy management strategy for optimal charge depletion of plug-in FCHEV based on multi-constraints deep reinforcement learning [J/OL]. IEEE transactions on transportation electrification, 2024:1-1(2024-05-13) [2024-06-28]. https://ieeexplore.ieee.org/document/10529282. DOI: 10.1109/TTE.2024.3400020.
    [19]
    蔡舒平, 葛佳伟, 程之瑞. 基于增强型遗传算法和NPV的微网优化 [J]. 信息技术, 2017(2): 150-154,160. DOI: 10.13274/j.cnki.hdzj.2017.02.036.

    CAI S P, GE J W, CHENG Z R. Research on economical optimal operation based on improved adaptive genetic algorithm optimization with NPV [J]. Information technology, 2017(2): 150-154,160. DOI: 10.13274/j.cnki.hdzj.2017.02.036.
    [20]
    何一丹, 何正文, 王能民, 等. 共享经济环境下的资源约束Max-NPV多项目调度优化 [J/OL]. 中国管理科学, 2024:1-13(2022-10-28) [2024-06-28]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2332.

    HE Y D, HE Z W, WANG N M, et al. Resource-constrained Max-NPV multi-project scheduling optimization under sharing economy environment [J/OL]. Chinese journal of management science, 2022:1-13(2022-10-28) [2024-06-28]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.2332.
    [21]
    王柄根.中国天楹:推进首个重力储能项目建设 [J].股市动态分析, 2023, (16):35.

    WANG B G. China Tianying: promoting the construction of thefirst gravity energy storage project [J]. Stock market trendanalysis weekly, 2023, (15):35.
    [22]
    王柄根. 中国天楹: 重力储能示范项目充放电测试成功 [J]. 股市动态分析, 2024(9): 35. DOI: 10.3969/j.issn.1671-0401.2024.09.017.

    WANG B G. China Tianying: successful charge-discharge test of gravity energy storage demonstration project [J]. Stock market trend analysis weekly, 2024(9): 35. DOI: 10.3969/j.issn.1671-0401.2024.09.017.
    [23]
    王文军. 延长钢筋混凝土结构寿命的几点思考 [J]. 海河水利, 2008(6): 42-43. DOI: 10.3969/j.issn.1004-7328.2008.06.017.

    WANG W J. Thoughts on extending the life of reinforced concrete structure [J]. Haihe water resources, 2008(6): 42-43. DOI: 10.3969/j.issn.1004-7328.2008.06.017.
    [24]
    王晨, 杜小平, 许麦扎, 等. 混凝土梁耐久性防护涂层基本性能试验 [J]. 涂层与防护, 2024, 45(5): 1-8,14. DOI: 10.3969/j.issn.2096-8639.2024.05.001.

    WANG C, DU X P, XU M Z, et al. Basic performance test of durable protective coatings for concrete beams [J]. Coating and protection, 2024, 45(5): 1-8,14. DOI: 10.3969/j.issn.2096-8639.2024.05.001.
    [25]
    谢琛. 十三陵抽水蓄能电站综合循环效率分析 [J]. 水力发电, 2002, 28(9): 7-8,13. DOI: 10.3969/j.issn.0559-9342.2002.09.004.

    XIE C. Analysis on the comprehensive circulation efficiency of Shisanling pumped-storage power plant [J]. Water power, 2002, 28(9): 7-8,13. DOI: 10.3969/j.issn.0559-9342.2002.09.004.
    [26]
    郑彦春, 陕超伦, 张晋宾. 长持续时间储能体系研究现状及发展展望 [J]. 南方能源建设, 2024, 11(2): 93-101. DOI: 10.16516/j.ceec.2024.2.09.

    ZHENG Y C, SHAN C L, ZHANG J B. Current research status and development prospects of long duration energy storage system [J]. Southern energy construction, 2024, 11(2): 93-101. DOI: 10.16516/j.ceec.2024.2.09.
    [27]
    贺鸿杰, 张宁, 杜尔顺, 等. 电网侧大规模电化学储能运行效率及寿命衰减建模方法综述 [J]. 电力系统自动化, 2020, 44(12): 193-207. DOI: 10.7500/AEPS20190820005.

    HE H J, ZHANG N, DU E S, et al. Review on modeling method for operation efficiency and lifespan decay of large-scale electrochemical energy storage on power grid side [J]. Automation of electric power systems, 2020, 44(12): 193-207. DOI: 10.7500/AEPS20190820005.
    [28]
    李学斌, 赵号, 陈世龙. 预制舱式磷酸铁锂电池储能电站能耗计算研究 [J]. 南方能源建设, 2023, 10(2): 71-77. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.010.

    LI X B, ZHAO H, CHEN S L. Research on energy consumption calculation of prefabricated cabin type lithium iron phosphate battery energy storage power station [J]. Southern energy construction, 2023, 10(2): 71-77. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.010.
    [29]
    张磊. 压缩空气储能系统效率分析 [D]. 北京: 北京交通大学, 2013. DOI: 10.7666/d.Y2428965.

    ZHANG L. Efficiency analysis of compressed air energy storage system [D]. Beijing: Beijing Jiaotong University, 2013. DOI: 10.7666/d.Y2428965.
    [30]
    万明忠, 杨易凡, 袁照威, 等. 大容量压缩空气储能关键技术 [J]. 南方能源建设, 2023, 10(6): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.003.

    WAN M Z, YANG Y F, YUAN Z W, et al. Key technologies of large-scale compressed air energy storage [J]. Southern energy construction, 2023, 10(6): 26-33. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.003.
  • Related Articles

    [1]LU Haotian, LIU Shaopeng, WANG Kai. Capacity Optimization Method for Photovoltaic Hydrogen Production Systems Based on Multi-Objective Particle Swarm Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(3): 133-143. DOI: 10.16516/j.ceec.2024-373
    [2]ZHANG Hongyu, XU Hongning, LI Dan, LI Junliang, WANG Jie, WANG Deming, ZHAO Haichao, ZHEN Chongli, ZHAO Hong. Impact of Techno-Economic Breakthroughs in Photovoltaic LCOE on Green Hydrogen Costs[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(3): 42-51. DOI: 10.16516/j.ceec.2024-287
    [3]XU Ting, HOU Jingzheng, ZHU Yuzhang, LIU Chengwei, ZHU Zhide, LIU Yuchu. Application and Economic Research of Deep Peak Shaving System for Coal-fired Units Coupling Non-afterburning Compressed Air Energy Storage Technology[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-364
    [4]HUANG Zhijun, SUN Lingyun. Exploring the Path of Cost Reduction and Efficiency Enhancement for Deep Sea Offshore Wind Power Projects[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 34-37. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.005
    [5]WANG Fan, LI Binsi, XIA Tongling, PENG Min, WANG Shaoyong. Economic Research on Energy Storage Auxiliary Frequency Regulation of Lithium Iron Phosphate Battery for 2 × 600 MW Coal-fired Unit in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 71-77. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.008
    [6]WANG Dongjie, LI Binsi, ZHOU Sikai. Equivalence Analysis of LCOE and IRR for New Energy Projects[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 101-109. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.014
    [7]ZHU Junhui. Analysis of Power Generation Technology and Economy on the Integration of Seawater Pump & Storage and Offshore PV[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.002
    [8]Xiaodan MIAO, Zhu ZHU, ✉. Economic Analysis of Nuclear Power in Fujian Province and Preliminary Discussion on “Nuclear Power Plant-pumped Storage Power Plant” Combined Operation[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 93-96. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.018
    [9]HU Kun. Optimized Design of the Cooling Water System for Working Liquid ofWater Ring Vacuum Pump[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 129-132. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.023
    [10]HU Kun, ZHANG Peng, LI Yingying. Energy Saving Driving System for Closed Circulating Cooling Water Pump[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(S1): 52-55. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.010

Catalog

    HONG Jianfeng

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (377) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return