[1] |
张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究 [J]. 中国工程科学, 2021, 23(6): 70-80. DOI: 10.15302/J-SSCAE-2021.06.004. |
ZHANG X, LI Y, MA Q, et al. Development of carbon capture, utilization and storage technology in China [J]. Strategic study of CAE, 2021, 23(6): 70-80. DOI: 10.15302/J-SSCAE-2021.06.004. |
[2] |
张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望 [J]. 中国人口·资源与环境, 2021, 31(9): 29-33. DOI: 10.12062/cpre.20210827. |
ZHANG X, LI K, MA Q, et al. Orientation and prospect of CCUS development under carbon neutrality target [J]. China population, resources and environment, 2021, 31(9): 29-33. DOI: 10.12062/cpre.20210827. |
[3] |
彭雪婷, 吕昊东, 张贤. IPCC AR6报告解读: 全球碳捕集利用与封存(CCUS)技术发展评估 [J]. 气候变化研究进展, 2022, 18(5): 580-590. DOI: 10.12006/j.issn.1673-1719.2022.140. |
PENG X T, LÜ H D, ZHANG X. Interpretation of IPCC AR6 report on carbon capture, utilization and storage (CCUS) technology development [J]. Climate change research, 2022, 18(5): 580-590. DOI: 10.12006/j.issn.1673-1719.2022.140. |
[4] |
SHAH B, SHAH M, SHAH V, et al. An anatomized study on the progress and prospects of CO2 utilization technology [J]. Case studies in chemical and environmental engineering, 2023, 8: 100381. DOI: 10.1016/j.cscee.2023.100381. |
[5] |
FU L P, REN Z K, SI W Z, et al. Research progress on CO2 capture and utilization technology [J]. Journal of CO2 utilization , 2022, 66: 102260. DOI: 10.1016/j.jcou.2022.102260. |
[6] |
罗海中, 吴大卫, 范永春, 等. 碳中和背景下CCUS技术发展及广东离岸封存潜力评估 [J]. 南方能源建设, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001. |
LUO H Z, WU D W, FAN Y C, et al. Development of CCUS technology in the context of carbon neutrality and assessment of the potential for offshore storage in Guangdong Province [J]. Southern energy construction, 2023, 10(6): 1-13. DOI: 10.16516/ j.gedi.issn2095-8676.2023.06.001. |
[7] |
IPCC. Climate change 2022: mitigation of climate change. Contribution of working group III to the sixth assessment report of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2022. |
[8] |
许海超, 龚硕锴. 二氧化碳利用技术现状及未来发展趋势 [J]. 广州化工, 2022, 50(23): 38-40. DOI: 10.3969/j.issn.1001-9677.2022.23.010. |
XU H C, GONG S K. Current status and future developmental direction of carbon dioxide utilization [J]. Guangzhou chemical industry, 2022, 50(23): 38-40. DOI: 10.3969/j.issn.1001-9677.2022.23.010. |
[9] |
BASINI L E, FURESI F, BAUMGÄRTL M, et al. CO2 capture and utilization (CCU) by integrating water electrolysis, electrified reverse water gas shift (E-RWGS) and methanol synthesis [J]. Journal of cleaner production, 2022, 377: 134280. DOI: 10.1016/j.jclepro.2022.134280. |
[10] |
IEA. Putting CO2 to use: Creating value from emissions [R]. Paris: International Energy Agency, 2019. |
[11] |
ALBERICI S, NOOTHOUT P, MIR G U R, et al. Assessing the potential of CO2 utilisation in the UK [R]. Utrecht: Ecofys, 2017. |
[12] |
CHAUVY R, DE WEIRELD G. CO2 utilization technologies in Europe: a short review [J]. Energy technology, 2020, 8(12): 2000627. DOI: 10.1002/ente.202000627. |
[13] |
National Academies of Sciences, Engineering, and Medicine. Carbon dioxide utilization markets and infrastructure: status and opportunities: a first report [R]. Washington: The National Academies Press, 2023. |
[14] |
経済産業省. 2050 年カーボンニュートラルに伴うグリーン成長戦略 [EB/OL]. (2021-06-18) [2024-09-06]. https://www.meti.go.jp/policy/energy_enviro. |
[15] |
中国21世纪议程管理中心. 中国二氧化碳利用技术评估报告 [M]. 北京: 科学出版社, 2014. |
The Administrative Center for China's Agenda 21. Assessment report on carbon dioxide utilization technology in China [M]. Beijing: Science Press, 2014. |
[16] |
蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)—— 中国CCUS路径研究 [R]. 北京: 生态环境部环境规划院, 2021. |
CAI B F, LI Q, ZHANG X, et al. China carbon dioxide capture utilization and storage (CCUS) annual report (2021) - a study of China's CCUS pathway [R]. Beijing: Chinese Academy of Environmental Planning, 2021. |
[17] |
CUéLLAR-FRANCA R M, AZAPAGIC A. Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts [J]. Journal of CO2 utilization, 2015, 9: 82-102. DOI: 10.1016/j.jcou.2014.12.001. |
[18] |
European Commission: Directorate-General for Research and Innovation. Novel carbon capture and utilisation technologies [M]. Belgium: Publications Office of the European Union, 2018. |
[19] |
LANZAFAME P, PERATHONER S, CENTI G, et al. Grand challenges for catalysis in the science and technology roadmap on catalysis for Europe: moving ahead for a sustainable future [J]. Catalysis science & technology, 2017, 7(22): 5182-5194. DOI: 10.1039/c7cy01067b. |
[20] |
CENTI G, PERATHONER S, SALLADINI A, et al. Economics of CO2 utilization: a critical analysis [J]. Frontiers in energy research, 2020, 8: 567986. DOI: 10.3389/fenrg.2020.567986. |
[21] |
张贤, 杨晓亮, 鲁玺, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2023) [R]. 北京: 中国21世纪议程管理中心, 2023. |
ZHANG X, YANG X L, LU X, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2023) [R]. Beijing: The Administrative Center for China's Agenda 21, 2023. |
[22] |
广东南方碳捕集与封存产业中心. 宁夏二氧化碳产业发展路径研究报告 [R]. 广州: 广东南方碳捕集与封存产业中心, 2023. |
Guangdong Southern Carbon Capture and Storage Industry Center. Research report on the development path of carbon dioxide industry in Ningxia [R]. Guangzhou: Guangdong Southern Carbon Capture and Storage Industry Center, 2023. |
[23] |
WANG W D, WEN J Y, WANG C W, et al. Current status and development trends of CO2 storage with enhanced natural gas recovery (CS-EGR) [J]. Fuel, 2023, 349: 128555. DOI: 10.1016/j.fuel.2023.128555. |
[24] |
LIU S Y, REN B, LI H Y, et al. CO2 storage with enhanced gas recovery (CSEGR): a review of experimental and numerical studies [J]. Petroleum science, 2022, 19(2): 594-607. DOI: 10.1016/j.petsci.2021.12.009. |
[25] |
ZHANG C L, WANG E Y, LI B B, et al. Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam [J]. Energy, 2023, 262: 125473. DOI: 10.1016/j.energy.2022.125473. |
[26] |
TALAPATRA A. A study on the carbon dioxide injection into coal seam aiming at enhancing coal bed methane (ECBM) recovery [J]. Journal of petroleum exploration and production technology, 2020, 10(5): 1965-1981. DOI: 10.1007/s13202-020-00847-y. |
[27] |
QIU W J, YANG Y, SONG J, et al. What chemical reaction dominates the CO2 and O2 in-situ uranium leaching? Insights from a three-dimensional multicomponent reactive transport model at the field scale [J]. Applied geochemistry, 2023, 148: 105522. DOI: 10.1016/j.apgeochem.2022.105522. |
[28] |
刘世奇, 皇凡生, 杜瑞斌, 等. CO2地质封存与利用示范工程进展及典型案例分析 [J]. 煤田地质与勘探, 2023, 51(2): 158-174. DOI: 10.3969/j.issn.1001-1986.2023.02.012. |
LIU S Q, HUANG F S, DU R B, et al. Progress and typical case analysis of demonstration projects of the geological sequestration and utilization of CO2 [J]. Coal geology & exploration, 2023, 51(2): 158-174. DOI: 10.3969/j.issn.1001-1986.2023.02.012. |
[29] |
郑旭帆, 黄艳, 徐冬, 等. 碱性固废CO2矿化利用技术工程应用进展 [J/OL]. 洁净煤技术, 1-14. [2024-07-31] [2024-08-06]. http://kns.cnki.net/kcms/detail/11.3676.td.20240730.1432.011.html. |
ZHENG X F, HUANG Y, XU D, et al. Progress in engineering application of alkaline solid waste CO2 mineralization utilization technology [J/OL]. Clean coal technology, 1-14. [2024-07-31] [2024-08-06]. http://kns.cnki.net/kcms/detail/11.3676.td.20240730.1432.011.html. |
[30] |
黄晶, 陈其针, 仲平, 等. 中国碳捕集利用与封存技术评估报告 [M]. 北京: 科学出版社, 2021. |
HUANG J, CHEN Q Z, ZHONG P, et al. National assesment report on development of carbon capture utilization and strorage technology in China [M]. Beijing: Science Press, 2021. |
[31] |
张丽, 马善恒. CO2资源转化利用关键技术机理、现状及展望 [J]. 应用化工, 2023, 52(6): 1874-1878. DOI: 10.3969/j.issn.1671-3206.2023.06.049. |
ZHANG L, MA S H. Mechanism, present situation and prospect of key technologies of CO2 resource conversion and utilization [J]. Applied chemical industry, 2023, 52(6): 1874-1878. DOI: 10.3969/j.issn.1671-3206.2023.06.049. |
[32] |
莫壮洪, 朱俊英, 李煦, 等. 微藻生物固定CO2耦合污染物减排技术应用及展望 [J]. 石油学报(石油加工), 2024, 40(5): 1430-1445. DOI: 10.369/j.issn.1001-8719.2024.05.026. |
MO Z H, ZHU J Y, LI X, et al. Application and prospect of the coupled technology of CO2 fixation and pollutant emission reduction by microalgae [J]. Acta petrolei sinica (petroleum processing section), 2024, 40(5): 1430-1445. DOI: 10.369/j.issn.1001-8719.2024.05.026. |
[33] |
CHEN X L, LI Y Q, TANG X, et al. Effect of gravity segregation on CO2 flooding under various pressure conditions: application to CO2 sequestration and oil production [J]. Energy, 2021, 226: 120294. DOI: 10.1016/j.energy.2021.120294. |
[34] |
龙冕, 齐桂雪, 冯超林. 二氧化碳混相与非混相驱油技术研究进展 [J]. 中外能源, 2018, 23(2): 18-26. |
LONG M, QI G X, FENG C L. Research progress of miscible and immiscible carbon dioxide flooding [J]. Sino-global energy, 2018, 23(2): 18-26. |
[35] |
陈欢庆. CO2驱油与埋存技术新进展 [J]. 油气地质与采收率, 2023, 30( 2): 18-26. DOI: 10.13673/j.cnki.cn37-1359/te.202208 048. |
CHEN H Q. New progress of CO2 flooding and storage technology [J]. Petroleum geology and recovery efficiency, 2023, 30( 2): 18-26. DOI: 10.13673/j.cnki.cn37-1359/te.202208 048. |
[36] |
ADU E, ZHANG Y D, LIU D H. Current situation of carbon dioxide capture, storage, and enhanced oil recovery in the oil and gas industry [J]. The Canadian journal of chemical engineering, 2019, 97(5): 1048-1076. DOI: 10.1002/cjce.23393. |
[37] |
HILL L B, LI X C, WEI N. CO2-EOR in China: a comparative review [J]. International journal of greenhouse gas control, 2020, 103: 103173. DOI: 10.1016/j.ijggc.2020.103173. |
[38] |
JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis [J]. Chemical reviews, 2020, 120(15): 7984-8034. DOI: 10.1021/acs.chemrev.9b00723. |
[39] |
KIM C, YOO C J, OH H S, et al. Review of carbon dioxide utilization technologies and their potential for industrial application [J]. Journal of CO2 utilization , 2022, 65: 102239. DOI: 10.1016/j.jcou.2022.102239. |
[40] |
叶知远, 饶娜, 夏菖佑, 等. CO2加氢制甲醇催化剂与项目进展 [J]. 洁净煤技术, 2024, 30(8): 150-161. DOI: 10.13226/j.issn.1006-6772.23030103. |
YE Z Y, RAO N, XIA C Y, et al. Advances in catalysts and project progress for CO2 hydrogenation to methanol [J]. Clean coal technology, 2024, 30(8): 150-161. DOI: 10.13226/j.issn.1006-6772.23030103. |
[41] |
徐敏杰, 朱明辉, 陈天元, 等. CO2 高值化利用: CO2加氢制甲醇催化剂研究进展 [J]. 化工进展, 2021, 40(2): 565-576. DOI: 10.16085/j.issn.1000-6613.2020-1401. |
XU M J, ZHU M H, CHEN T Y, et al. High value utilization of CO2: research progress of catalyst for hydrogenation of CO2 to methanol [J]. Chemical industry and engineering progress, 2021, 40(2): 565-576. DOI: 10.16085/j.issn.1000-6613.2020-1401. |
[42] |
苏静, 张宗飞, 张大洲. 二氧化碳加氢制甲醇的技术进展及展望 [J]. 化肥设计, 2022, 60(2): 6-9, 14. DOI: 10.3969/j.issn.1004-8901.2022.02.002. |
SU J, ZHANG Z F, ZHANG D Z. Technological progress and prospects of carbon dioxide hydrogenation to methanol [J]. Chemical fertilizer design, 2022, 60(2): 6-9, 14. DOI: 10.3969/j.issn.1004-8901.2022.02.002. |
[43] |
王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成 [J]. 化工进展, 2022, 41(3): 1309-1317. DOI: 10.16085/j.issn.1000-6613.2022-0244. |
WANG J J, HAN Z, CHEN S Y, et al. Liquid sunshine methanol [J]. Chemical industry and engineering progress, 2022, 41(3): 1309-1317. DOI: 10.16085/j.issn.1000-6613.2022-0244. |
[44] |
李玲. 绿色甲醇要发展,管输体系需跟上 [N/OL]. 中国能源报. (2024-08-12) [2024-09-01]. http://paper.people.com.cn/zgnyb/html/2024-08/12/content_26075497.htm. |
LI L. For the Development of green methanol, the pipeline system must keep up [N/OL]. China Energy News. (2024-08-12). [2024-09-01]. http://paper.people.com.cn/zgnyb/html/2024-08/12/content_26075497.htm. |
[45] |
IRENA. 创新前景: 可再生甲醇 [R]. 阿布扎比: IRENA, 2021. |
IRENA. Innovation outlook: renewable methanol [R]. Abu Dhabi: IRENA, 2021. |
[46] |
谢元涛, 封孝信. 钢渣矿化固化二氧化碳研究现状及展望 [J]. 金属矿山, 2023(11): 45-54. DOI: 10.19614/j.cnki.jsks.202311004. |
XIE Y T, FENG X X. Research status and prospect of steel slag mineralization for carbon dioxide capture and sequestration [J]. Metal mine, 2023(11): 45-54. DOI: 10.19614/j.cnki.jsks.202311004. |
[47] |
刘文昊, 陈庆彩, 徐腾飞. 双碳战略背景下的钢渣固碳技术研究进展 [J]. 环境工程, 2024, 42(5): 172-182. DOI: 10.13205/j.hjgc.202405022. |
LIU W H, CHEN Q C, XU T F. Research progress of carbon sequestration technology of steel slag under the background of dual carbon strategy [J]. Environmental engineering, 2024, 42(5): 172-182. DOI: 10.13205/j.hjgc.202405022. |
[48] |
张建芳, 田牧泽. 全球首台套固废与二氧化碳矿化综合利用项目在包钢实施 [N/OL]. 包头新闻网. (2021-08-02) [2024-09-01]. https://www.baotounews.com.cn/p/752397.html. |
ZHANG J F, TIAN M Z. The world’s first comprehensive utilization project of solid waste and CO2 mineralization implemented in Baogang [N/OL]. Baotou News. (2021-08-02) [2024-09-01]. https://www.baotounews.com.cn/p/752397.html. |
[49] |
张兴刚. 全球首座万吨级二氧化碳直接利用工业实验示范工厂投产 [N/OL]. 中国化工报. (2023-07-18) [2024-09-19]. https://www.ccin.com.cn/detail/38d422a8d08a0c39324d4178dfdcced4. |
ZHANG X G. The world's first 10,000-ton-scale CO2 direct utilization industrial demonstration plant begins operation [N/OL]. China Chemical Industry News. (2023-07-18) [2024-09-19]. https://www.ccin.com.cn/detail/38d422a8d08a0c39324d4178dfdcced4. |
[50] |
莫壮洪, 朱俊英, 荣峻峰, 等. 微藻生物固碳技术在碳中和中的应用及潜在价值 [J]. 石油炼制与化工, 2024, 55(1): 98-111. DOI: 10.3969/j.issn.1005-2399.2024.01.023. |
MO Z H, ZHU J Y, RONG J F, et al. Application and potential value of microalgae bio-carbon fixation technology in carbon neutrality [J]. Petroleum processing and petrochemicals, 2024, 55(1): 98-111. DOI: 10.3969/j.issn.1005-2399.2024.01.023. |
[51] |
REN H Y, ZHOU D, LU J W, et al. Mapping the field of microalgae CO2 sequestration: a bibliometric analysis [J]. Environmental science and pollution research, 2023, 30(32): 78030-78040. DOI: 10.1007/s11356-023-27850-0. |
[52] |
陈昊. 海丰将建微藻固碳暨干冰转化项目 [N/OL]. 中国环境报. (2021-07-30) [2024-09-19]. http://epaper.cenews.com.cn/html/2021-07/30/content_68379.htm. |
CHEN H. Haifeng to build microalgae carbon fixation and dry ice conversion project [N/OL]. China Environmental News. (2021-07-30) [2024-09-19]. http://epaper.cenews.com.cn/html/2021-07/30/content_68379.htm. |
[53] |
陈思亮. 国内首个“生物质电厂—微藻固碳—资源化利用”负碳经济新模式落地湛江 [N/OL]. 南方日报. (2024-01-31) [2024-09-19]. https://static.nfapp.southcn.com/content/202401/31/c8561547.html. |
CHEN S L. China's first "biomass power plant-microalgae carbon fixation-resource utilization" negative carbon economy model launched in Zhanjiang [N/OL]. Nanfang Daily. (2024-01-31) [2024-09-19]. https://static.nfapp.southcn.com/content/202401/31/c8561547.html. |
[54] |
ZIMMERMANN A, MÜLLER L J, MARXEN A, et al. Techno-economic assessment & life-cycle assessment guidelines for CO2 utilization (Version 1.1) [R]. Ann Arbor: Global CO2 Initiative, 2020. |
[55] |
LIU M, ZHANG Y, LAN H, et al. Assessing the cost reduction potential of CCUS cluster projects of coal-fired plants in Guangdong Province in China [J]. Frontiers of earth science, 2023, 17(3): 844-855. DOI: 10.1007/s11707-022-1030-1. |
[56] |
汪芳, 廖广志, 苏春梅, 等. 二氧化碳捕集、驱油与封存项目碳减排量核算方法 [J]. 石油勘探与开发, 2023, 50(4): 862-871. DOI: 10.11698/PED.20220771. |
WANG F, LIAO G Z, SU C M, et al. Carbon emission reduction accounting method for a CCUS-EOR project [J]. Petroleum exploration and development, 2023, 50(4): 862-871. DOI: 10.11698/PED.20220771. |
[57] |
孟新. 中国CCUS-EOR项目经济效果及其提升手段研究 [J]. 油气地质与采收率, 2023, 30(2): 181-186. DOI: 10.13673/j.cnki.cn37-1359/te.202204009. |
MENG X. Research on economic effect of China's CCUS-EOR projects and its improvement methods [J]. Petroleum geology and recovery efficiency, 2023, 30(2): 181-186. DOI: 10.13673/j.cnki.cn37-1359/te.202204009. |
[58] |
袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望 [J]. 石油勘探与开发, 2022, 49(4): 828-834. DOI: 10.11698/PED.20220212. |
YUAN S Y, MA D S, LI J S, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization [J]. Petroleum exploration and development, 2022, 49(4): 828-834. DOI: 10.11698/PED.20220212. |
[59] |
林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展 [J]. 南方能源建设, 2020, 7(2): 14-19. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.002. |
LIN H Z, LUO Z B, PEI A G, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen [J]. Southern energy construction, 2020, 7(2): 14-19. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.002. |
[60] |
陈馨. 典型制氢工艺生命周期碳排放对比研究 [J]. 当代石油石化, 2023, 31(1): 19-25. DOI: 10.3969/j.issn.1009-6809.2023.01.005. |
CHEN X. Comparative study on life-cycle carbon emissions of typical hydrogen production processes [J]. Petroleum & petrochemical today, 2023, 31(1): 19-25. DOI: 10.3969/j.issn.1009-6809.2023.01.005. |
[61] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 温室气体排放核算与报告要求 第5部分: 钢铁生产企业: GB/T 32151.5—2015 [S]. 北京: 中国标准出版社, 2016. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Requirements of the greenhouse gas emission accounting and reporting—part 5: iron and steel production enterprise: GB/T 32151.5—2015 [S]. Beijing: Standards Press of China, 2016. |
[62] |
川财证券研究所. 不同制氢工艺的成本对比——氢能行业深度研究报告 [R]. 成都: 川财证券有限责任公司, 2022. |
Chuancai Securities Research Institute. Cost comparison of different hydrogen production processes-in depth research report on the hydrogen energy industry [R]. Chengdu: Chuancai Securities Co., Ltd., 2022. |
[63] |
WANG X, LU X Y, TURVEY C C, et al. Evaluation of the carbon sequestration potential of steel slag in China based on theoretical and experimental labile Ca [J]. Resources, conservation and recycling, 2022, 186: 106590. DOI: 10.1016/j.resconrec.2022.106590. |
[64] |
何捷, 崔敬轩, 聂卿, 等. 中国水泥行业碳中和路径研究 [R]. 北京: 中国建筑材料科学研究总院有限公司, 2023. |
HE J, CUI J X, NIE Q, et al. A study on the carbon neutrality pathways of China's cement industry [R]. Beijing: China Building Materials Academy Co., Ltd., 2023. |
[65] |
HUIJGEN W J J, COMANS R N J, WITKAMP G J. Cost evaluation of CO2 sequestration by aqueous mineral carbonation [J]. Energy conversion and management, 2007, 48(7): 1923-1935. DOI: 10.1016/j.enconman.2007.01.035. |
[66] |
国海证券. 固碳打开新空间, 三方共赢助推广——仕净科技(301030)深度报告之二 [EB/OL]. (2023-06-29) [2024-09-06]. https://pdf.dfcfw.com/pdf/H3_AP202306301591930728_1.pdf. |
Sealand Securities. Carbon fixation opens new space, tripartite win-win to help promotion - Shijing technology (301030) in-depth report No. 2 [EB/OL]. (2023-06-29) [2024-09-06]. https://pdf.dfcfw.com/pdf/H3_AP202306301591930728_1.pdf. |
[67] |
罗祎青, 王雪, 袁希钢. 微藻生物柴油生命周期的能量平衡与碳平衡分析 [J]. 清华大学学报(自然科学版), 2018, 58(3): 324-329. DOI: 10.16511/j.cnki.qhdxxb.2018.25.009. |
LUO Y Q, WANG X, YUAN X G. Energy and carbon balances in microalgae biodiesel [J]. Journal of Tsinghua University (science and technology), 2018, 58(3): 324-329. DOI: 10.16511/j.cnki.qhdxxb.2018.25.009. |
[68] |
中国温室气体工作组. 中国产品全生命周期温室气体排放系数集(2022) [R]. 北京: 中国环境出版集团, 2022. |
China Greenhouse Gas Working Group. China products carbon footprint factors database (2022) [R]. Beijing: China Environment Publishing Group, 2022. |
[69] |
闫淑娟. “双碳”引路 向绿而行——安泰恩懿推出微藻养殖开创国内微藻减碳先河 [N]. 晋中晚报, 2022-08-24. |
YAN S J. "Double carbon" leads the way to green - An Tai Enyi launched microalgae culture to create a domestic microalgae carbon reduction pioneer [N]. Jinzhong Evening News, 2022-08-24. |
[70] |
IGHALO J O, DULTA K, KURNIAWAN S B, et al. Progress in microalgae application for CO2 sequestration [J]. Cleaner chemical engineering, 2022, 3: 100044. DOI: 10.1016/j.clce.2022.100044. |
[71] |
GIESEN C V D, KLEIJN R, KRAMER G J. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2 [J]. Environmental science & technology, 2014, 48(12): 7111-7121. DOI: 10.1021/es500191g. |
[72] |
KLEIJNE K D, HANSSEN S V, DINTEREN L V, et al. Limits to Paris compatibility of CO2 capture and utilization [J]. One earth, 2022, 5(2): 168-185. DOI: 10.1016/j.oneear.2022.01.006. |
[73] |
HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal [J]. Nature, 2019(575): 87-97. DOI: 10.1038/s41586-019-1681-6. |