[1] |
LUEKING A D, COLE M W. Energy and mass balances related to climate change and remediation [J]. Science of the total environment, 2017, 590-591: 416-429. DOI: 10.1016/j.scitotenv.2016.12.101. |
[2] |
李汪繁, 吴何来. 双碳目标下我国碳市场发展分析及建议 [J]. 南方能源建设, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. |
LI W F, WU H L. Analysis and suggestions for the development of carbon emissions trading markets in China under carbon peak and neutrality goals [J]. Southern energy construction, 2022, 9(4): 118-126. DOI: 10.16516/j.gedi.issn2095-8676.2022.04.015. |
[3] |
JEFFERSON M. IPCC fifth assessment synthesis report: "climate change 2014: longer report": critical analysis [J]. Technological forecasting and social change, 2015, 92: 362-363. DOI: 10.1016/j.techfore.2014.12.002. |
[4] |
YAUMI A L, BAKAR M Z A, HAMEED B H. Recent advances in functionalized composite solid materials for carbon dioxide capture [J]. Energy, 2017, 124: 461-480. DOI: 10.1016/j.energy.2017.02.053. |
[5] |
Global CCS Institute. Global status of CCS 2020 [R]. Australia: Global CCS Institute, 2021. |
[6] |
张治忠, 陈继平, 谭学谦, 等. 天然气联合循环电厂燃烧后CO2捕集一体化技术经济评价 [J]. 南方能源建设, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008. |
ZHANG Z Z, CHEN J P, TAN X Q, et al. Economic evaluation of post-combustion CO2 capture integration technology in natural gas combined cycle power plant [J]. Southern energy construction, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008. |
[7] |
SONG C F, LIU Q L, DENG S, et al. Cryogenic-based CO2 capture technologies: state-of-the-art developments and current challenges [J]. Renewable and sustainable energy reviews, 2019, 101: 265-278. DOI: 10.1016/j.rser.2018.11.018. |
[8] |
董瑞, 高林, 何松, 等. CCUS技术对我国电力行业低碳转型的意义与挑战 [J]. 发电技术, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053. |
DONG R, GAO L, HE S, et al. Significance and challenges of CCUS technology for low-carbon transformation of China´s power industry [J]. Power generation technology, 2022, 43(4): 523-532. DOI: 10.12096/j.2096-4528.pgt.22053. |
[9] |
TAO M N, XU N, GAO J Z, et al. Phase-change mechanism for capturing CO2 into an environmentally benign nonaqueous solution: a combined NMR and molecular dynamics simulation study [J]. Energy & fuels, 2019, 33(1): 474-483. DOI: 10.1021/acs.energyfuels.8b03448. |
[10] |
SINGH A, STÉPHENNE K. Shell cansolv CO2 capture technology: achievement from first commercial plant [J]. Energy procedia, 2014, 63: 1678-1685. DOI: 10.1016/j.egypro.2014.11.177. |
[11] |
RABENSTEINER M, KINGER G, KOLLER M, et al. Pilot plant study of aqueous solution of piperazine activated 2-amino-2-methyl-1-propanol for post combustion carbon dioxide capture [J]. International journal of greenhouse gas control, 2016, 51: 106-117. DOI: 10.1016/j.ijggc.2016.04.035. |
[12] |
IDEM R, WILSON M, TONTIWACHWUTHIKUL P, et al. Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant [J]. Industrial & engineering chemistry research, 2006, 45(8): 2414-2420. DOI: 10.1021/ie050569e. |
[13] |
OCHEDI F O, YU J L, YU H, et al. Carbon dioxide capture using liquid absorption methods: a review [J]. Environmental chemistry letters, 2021, 19(1): 77-109. DOI: 10.1007/s10311-020-01093-8. |
[14] |
SMITH K, XIAO G K, MUMFORD K, et al. Demonstration of a concentrated potassium carbonate process for CO2 capture [J]. Energy & fuels, 2014, 28(1): 299-306. DOI: 10.1021/ef4014746. |
[15] |
李小端, 赵兴雷, 叶舣, 等. 基于电渗析技术的CO2吸收剂再生过程研究 [J]. 发电技术, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019. |
LI X D, ZHAO X L, YE Y, et al. Study on reclamation process of CO2 absorbent based on electrodialysis technology [J]. Power generation technology, 2022, 43(4): 593-599. DOI: 10.12096/j.2096-4528.pgt.22019. |
[16] |
张欢, 汪丽, 叶舣, 等. 乙二烯三胺与三乙醇胺混合胺溶液CO2吸收剂研究 [J]. 发电技术, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002. |
ZHANG H, WANG L, YE Y, et al. Study on CO2 absorbent of DETA and TEA mixed amine solution [J]. Power generation technology, 2022, 43(4): 609-617. DOI: 10.12096/j.2096-4528.pgt.22002. |
[17] |
林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展 [J]. 南方能源建设, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003. |
LIN H Z, YANG H, LUO H Z, et al. Research progress on amine absorbent for CO2 capture from flue gas [J]. Southern energy construction, 2019, 6(1): 16-21. DOI: 10.16516/j.gedi.issn2095-8676.2019.01.003. |
[18] |
WANG Q, LUO J Z, ZHONG Z Y, et al. CO2 capture by solid adsorbents and their applications: current status and new trends [J]. Energy & environmental science, 2011, 4(1): 42-55. DOI: 10.1039/C0EE00064G. |
[19] |
WAWRZYŃCZAK D, MAJCHRZAK-KUCĘBA I, SROKOSZ K, et al. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas [J]. Separation and purification technology, 2019, 209: 560-570. DOI: 10.1016/j.seppur.2018.07.079. |
[20] |
LIU B, YE L Q, WANG R, et al. Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity [J]. ACS applied materials & interfaces, 2018, 10(4): 4001-4009. DOI: 10.1021/acsami.7b17503. |
[21] |
WANG L, YANG Y, SHEN W L, et al. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units [J]. Industrial & engineering chemistry research, 2013, 52(23): 7947-7955. DOI: 10.1021/ie4009716. |
[22] |
宗杰, 马庆兰, 陈光进, 等. 二氧化碳分离捕集研究进展 [J]. 现代化工, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013. |
ZONG J, MA Q L, CHEN G J, et al. Progress of the separation and capture of CO2 [J]. Modern chemical industry, 2016, 36(11): 56-60. DOI: 10.16606/j.cnki.issn0253-4320.2016.11.013. |
[23] |
WON Y, KIM J Y, PARK Y C, et al. Post-combustion CO2 capture process in a circulated fluidized bed reactor using 200 kg potassium-based sorbent: the optimization of regeneration condition [J]. Energy, 2020, 208: 118188. DOI: 10.1016/j.energy.2020.118188. |
[24] |
HORNBOSTEL M. Pilot-scale evaluation of an advanced carbon sorbent-based process for post-combustion carbon capture [R]. Menlo Park: SRI International, 2016. |
[25] |
高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展 [J]. 辽宁化工, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018. |
GAO T F, CHANG C, YANG Y, et al. Research progress of pressure swing adsorption technology and adsorption materials for carbon capture [J]. Liaoning chemical industry, 2020, 49(11): 1389-1394. DOI: 10.3969/j.issn.1004-0935.2020.11.018. |
[26] |
张心悦. 层状复合金属氧化物中温吸附CO2的性能研究 [D]. 北京: 北京化工大学, 2018. DOI: 10.7666/d.Y3390266. |
ZHANG X Y. Study on CO2 adsorption of mixed metal oxide under medium temperature [D]. Beijing: Beijing University of Chemical Technology, 2018. DOI: 10.7666/d.Y3390266. |
[27] |
陈琦, 张荣荣, 韩宝航. 基于氧化偶联聚合制备的共轭多孔聚咔唑及相关性能研究进展 [J]. 高分子通报, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001. |
CHEN Q, ZHANG R R, HAN B H. Conjugated porous polycarbazoles via oxidative coupling polymerization from preparation to properties [J]. Chinese polymer bulletin, 2018(6): 1-8. DOI: 10.14028/j.cnki.1003-3726.2018.06.001. |
[28] |
GAO W, LIANG S, WANG R, et al. Industrial carbon dioxide capture and utilization: state of the art and future challenges [J]. Chemical society reviews, 2020, 49(23): 8584-8686. DOI: 10.1039/D0CS00025F. |
[29] |
RAO L L, MA R, LIU S F, et al. Nitrogen enriched porous carbons from D-glucose with excellent CO2 capture performance [J]. Chemical engineering journal, 2019, 362: 794-801. DOI: 10.1016/j.cej.2019.01.093. |
[30] |
KONG Y X, JIN L, QIU J. Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites [J]. Science of the total environment, 2013, 463-464: 192-198. DOI: 10.1016/j.scitotenv.2013.05.050. |
[31] |
QIAN D, LEI C, HAO G P, et al. Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO2 capture capability [J]. ACS applied materials & interfaces, 2012, 4(11): 6125-6132. DOI: 10.1021/am301772k. |
[32] |
CHAI S H, LIU Z M, HUANG K, et al. Amine functionalization of microsized and nanosized mesoporous carbons for carbon dioxide capture [J]. Industrial & engineering chemistry research, 2016, 55(27): 7355-7361. DOI: 10.1021/acs.iecr.6b00823. |
[33] |
SEVILLA M, FUERTES A B. Sustainable porous carbons with a superior performance for CO2 capture [J]. Energy & environmental science, 2011, 4(5): 1765-1771. DOI: 10.1039/c0ee00784f. |
[34] |
LIU F Q, LI W, ZHAO J, et al. Covalent grafting of polyethyleneimine on hydroxylated three-dimensional graphene for superior CO2 capture [J]. Journal of materials chemistry A, 2015, 3(23): 12252-12258. DOI: 10.1039/c5ta01536g. |
[35] |
WANG H, WANG H, LIU G S, et al. In-situ pyrolysis of Taihu blue algae biomass as appealing porous carbon adsorbent for CO2 capture: role of the intrinsic N [J]. Science of the total environment, 2021, 771: 145424. DOI: 10.1016/J.SCITOTENV.2021.145424. |
[36] |
GAN F L, WANG B D, JIN Z H, et al. From typical silicon-rich biomass to porous carbon-zeolite composite: a sustainable approach for efficient adsorption of CO2 [J]. Science of the total environment, 2021, 768: 144529. DOI: 10.1016/j.scitotenv.2020.144529. |
[37] |
ZUKAL A, SHAMZHY M, KUBŮ M, et al. The effect of pore size dimensions in isoreticular zeolites on carbon dioxide adsorption heats [J]. Journal of CO2 utilization, 2018, 24: 157-163. DOI: 10.1016/j.jcou.2017.12.016. |
[38] |
CHEN S J, ZHU M, TANG Y C, et al. Molecular simulation and experimental investigation of CO2 capture in a polymetallic cation-exchanged 13X zeolite [J]. Journal of materials chemistry A, 2018, 6(40): 19570-19583. DOI: 10.1039/C8TA05647A. |
[39] |
CALLEJA G, PAU J, CALLES J A. Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios [J]. Journal of chemical & engineering data, 1998, 43(6): 994-1003. DOI: 10.1021/je9702100. |
[40] |
WANG S, BAI P, SUN M Z, et al. Fabricating mechanically robust binder-free structured zeolites by 3D printing coupled with zeolite soldering: a superior configuration for CO2 capture [J]. Advanced science, 2019, 6(17): 1901317. DOI: 10.1002/advs.201901317. |
[41] |
YANG H D, FANG X Q, LI Z Y, et al. Copper-doped small pore zeolites for CO2 capture by honeycomb rotor with low temperature regeneration [J]. ACS sustainable chemistry & engineering, 2022, 10(5): 1759-1764. DOI: 10.1021/acssuschemeng.1c08347. |
[42] |
LIANG W Q, HUANG J H, XIAO P, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas [J]. Chinese journal of chemical engineering, 2022, 43: 335-342. DOI: 10.1016/j.cjche.2022.02.004. |
[43] |
ALINEZHAD H, ABARGHOUEI M F, TAJBAKHSH M, et al. Application of MEA, TEPA and morpholine grafted NaY zeolite as CO2 capture [J]. Iranian journal of chemistry and chemical engineering, 2021, 40(2): 581-592. DOI: 10.30492/IJCCE.2020.37861. |
[44] |
LIU Z, WANG L, KONG X M, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant [J]. Industrial & engineering chemistry research, 2012, 51(21): 7355-7363. DOI: 10.1021/ie3005308. |
[45] |
WANG L, YANG Y, SHEN W L, et al. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant [J]. Chemical engineering science, 2013, 101: 615-619. DOI: 10.1016/j.ces.2013.07.028. |
[46] |
GE K, YU Q C, CHEN S H, et al. Modeling CO2 adsorption dynamics within solid amine sorbent based on the fundamental diffusion-reaction processes [J]. Chemical engineering journal, 2019, 364: 328-339. DOI: 10.1016/j.cej.2019.01.183. |
[47] |
AFONSO R, SARDO M, MAFRA L, et al. Unravelling the structure of chemisorbed CO2 species in mesoporous aminosilicas: a critical survey [J]. Environmental science & technology, 2019, 53(5): 2758-2767. DOI: 10.1021/acs.est.8b05978. |
[48] |
MIN K, CHOI W, KIM C, et al. Oxidation-stable amine-containing adsorbents for carbon dioxide capture [J]. Nature communications, 2018, 9(1): 726. DOI: 10.1038/s41467-018-03123-0. |
[49] |
KIM C, CHOI W, CHOI M. SO2-resistant amine-containing CO2 adsorbent with a surface protection layer [J]. ACS applied materials & interfaces, 2019, 11(18): 16586-16593. DOI: 10.1021/acsami.9b02831. |
[50] |
ANYANWU J T, WANG Y R, YANG R T. CO2 capture (including direct air capture) and natural gas desulfurization of amine-grafted hierarchical bimodal silica [J]. Chemical engineering journal, 2022, 427: 131561. DOI: 10.1016/J.CEJ.2021.131561. |
[51] |
LI K M, JIANG J G, YAN F, et al. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents [J]. Applied energy, 2014, 136: 750-755. DOI: 10.1016/j.apenergy.2014.09.057. |
[52] |
MENG Y, JIANG J G, GAO Y C, et al. Comprehensive study of CO2 capture performance under a wide temperature range using polyethyleneimine-modified adsorbents [J]. Journal of CO2 utilization, 2018, 27: 89-98. DOI: 10.1016/j.jcou.2018.07.007. |
[53] |
LOU F J, ZHANG A F, ZHANG G H, et al. Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure [J]. Applied energy, 2020, 264: 114637. DOI: 10.1016/j.apenergy.2020.114637. |
[54] |
CHEN C, XU H F, JIANG Q B, et al. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents [J]. Energy, 2021, 214: 119093. DOI: 10.1016/j.energy.2020.119093. |
[55] |
LI K M, LU L, XU Y R, et al. The use of metal nitrate-modified amorphous nano silica for synthesizing solid amine CO2 adsorbents with resistance to urea linkage formation [J]. International journal of greenhouse gas control, 2021, 106: 103289. DOI: 10.1016/j.ijggc.2021.103289. |
[56] |
CHENG Y D, TAVARES S R, DOHERTY C M, et al. Enhanced polymer crystallinity in mixed-matrix membranes induced by metal-organic framework nanosheets for efficient CO2 capture [J]. ACS applied materials & interfaces, 2018, 10(49): 43095-43103. DOI: 10.1021/acsami.8b16386. |
[57] |
ANDERSON R, RODGERS J, ARGUETA E, et al. Role of pore chemistry and topology in the CO2 capture capabilities of MOFs: from molecular simulation to machine learning [J]. Chemistry of materials, 2018, 30(18): 6325-6337. DOI: 10.1021/acs.chemmater.8b02257. |
[58] |
吴屹伟. 微纳结构镍和铬基金属-有机框架及其复合材料的电化学性能研究 [D]. 漳州: 闽南师范大学, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216. |
WU Y W. Study on the electrochemical properties of Cr and Ni-based mofs and their composites [D]. Zhangzhou: Minnan Normal University, 2020. DOI: 10.27726/d.cnki.gzzsf.2020.000216. |
[59] |
RAMOS-FERNANDEZ E V, GRAU-ATIENZA A, FARRUSSENG D, et al. A water-based room temperature synthesis of ZIF-93 for CO2 adsorption [J]. Journal of materials chemistry A, 2018, 6(14): 5598-5602. DOI: 10.1039/c7ta09807C. |
[60] |
LIU X L, PANG H W, LIU X W, et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions [J]. The innovation, 2021, 2(1): 100076. DOI: 10.1016/J.XINN.2021.100076. |
[61] |
ZHANG Y F, LIU H X, GAO F X, et al. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment [J]. EnergyChem, 2022, 4(4): 100078. DOI: 10.1016/j.enchem.2022.100078. |
[62] |
DIVEKAR S, DASGUPTA S, ARYA A, et al. Improved CO2 recovery from flue gas by layered bed vacuum swing adsorption (VSA) [J]. Separation and purification technology, 2020, 234: 115594. DOI: 10.1016/j.seppur.2019.05.036. |
[63] |
EBNER A D, RITTER J A. Equilibrium theory analysis of dual reflux PSA for separation of a binary mixture [J]. Aiche journal, 2010, 50(10): 2418-2429. DOI: 10.1002/aic.10191. |
[64] |
刘闯. 分离CO2的煤基活性炭制备研究 [D]. 徐州: 中国矿业大学, 2017. |
LIU C. Research on preparation of coal-based activated carbon for separating CO2 [D]. Xuzhou: China University of Mining and Technology, 2017. |
[65] |
BAHRUN M H V, BONO A, OTHMAN N, et al. Carbon dioxide removal from biogas through pressure swing adsorption-a review [J]. Chemical engineering research and design, 2022, 183: 285-306. DOI: 10.1016/J.CHERD.2022.05.012. |
[66] |
刘应书, 郑新港, 刘文海, 等. 烟道气低浓度二氧化碳的变压吸附法富集研究 [J]. 现代化工, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017. |
LIU Y S, ZHENG X G, LIU W H, et al. Low concentration carbon dioxide enrichment from flue gas by pressure swing adsorption [J]. Modern chemical industry, 2009, 29(7): 76-79. DOI: 10.16606/j.cnki.issn0253-4320.2009.07.017. |
[67] |
GHANBARI T, ABNISA F, WAN DAUD W M A. A review on production of metal organic frameworks (MOF) for CO2 adsorption [J]. Science of the total environment, 2020, 707: 135090. DOI: 10.1016/j.scitotenv.2019.135090. |
[68] |
SHAH G, AHMAD E, PANT K K, et al. Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption [J]. International journal of hydrogen energy, 2021, 46(9): 6588-6612. DOI: 10.1016/j.ijhydene.2020.11.116. |
[69] |
HARAOKA T, MOGI Y, SAIMA H. PSA system for the recovery of carbon dioxide from blast furnace gas in steel works the influence of operation conditions on CO2 separation [J]. Kagaku kogaku ronbunshu, 2013, 39(5): 439-444. DOI: 10.1252/kakoronbunshu.39.439. |
[70] |
QADER A, HOOPER B, INNOCENZI T, et al. Novel post-combustion capture technologies on a lignite fired power plant - results of the CO2CRC/H3 capture project [J]. Energy procedia, 2011, 4: 1668-1675. DOI: 10.1016/j.egypro.2011.02.039. |
[71] |
ISHIBASHI M, OTA H, AKUTSU N, et al. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method [J]. Energy conversion and management, 1996, 37(6/8): 929-933. DOI: 10.1016/0196-8904(95)00279-0. |
[72] |
CHO S H, PARK J H, BEUM H T, et al. A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption [J]. Studies in surface science and catalysis, 2004, 153: 405-410. DOI: 10.1016/S0167-2991(04)80287-8. |