Advanced Search
YIN Qin, GUO Jinchuan. Research on the Design of Operating Condition of Multi-Resistance Superconducting DC Current Limiter[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.003
Citation: YIN Qin, GUO Jinchuan. Research on the Design of Operating Condition of Multi-Resistance Superconducting DC Current Limiter[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.003

Research on the Design of Operating Condition of Multi-Resistance Superconducting DC Current Limiter

More Information
  • Received Date: September 26, 2022
  • Revised Date: April 05, 2023
  • Available Online: August 23, 2023
  •   Introduction  The working principle of the resistive superconducting current limiter is based on the zero resistance effect of the superconductor, which is connected in series in the line and basically has no resistance during normal operation. When the circuit is short-circuited and the current exceeds the critical current, the superconductor loses excess and the resistance value increases rapidly, which plays a role in limiting the short-circuit current. So the superconducting DC (Direct Current) current limiter has little effect on the power grid when it is in normal operation. When the system short-circuit current exceeds the critical current, it will quickly limit the current value, effectively reducing the requirements for DC equipment. Based on Nan'ao ±160 kV multi-terminal VSC-HVDC (Voltage Source Converter Based High Voltage Direct Current) system, the possible operating conditions of superconducting DC current limiter are discussed, and how to realize the possible operating conditions is analyzed.
      Method  For the five possible operating conditions, it was recommended to set disconnector to achieve automatic switching of operating conditions.
      Result  The proposed scheme of electrical connection and compact layout is given based on the configuration of the equipment. And according to different operating conditions, the corresponding current path diagram is given.
      Conclusion  The possible working conditions of superconducting DC current limiter and the automatic switching electrical connection and compact layout can be obtained by similar analysis for other flexible DC transmission systems.
  • [1]
    邹常跃, 韦嵘晖, 冯俊杰, 等. 柔性直流输电发展现状及应用前景 [J]. 南方电网技术, 2022, 16(3): 1-7. DOI: 10.13648/j.cnki.issn1674-0629.2022.03.001.

    ZOU C Y, WEI R H, FENG J J, et al. Development status and application prospect of VSC-HVDC [J]. Southern power system technology, 2022, 16(3): 1-7. DOI: 10.13648/j.cnki.issn1674-0629.2022.03.001.
    [2]
    许树楷, 罗雨. 背靠背输电系统中柔性直流与常规直流的协调控制策略 [J]. 南方能源建设, 2016, 3(2): 9-15. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.002.

    XU S K, LUO Y. Study on coordination control strategy of VSC/LCC BtB HVDC [J]. Sothern energy construction, 2016, 3(2): 9-15. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.002.
    [3]
    于昊洋, 张艳, 陈正曦, 等. 中国-韩国-日本跨国联网构建方案及经济性研究 [J]. 全球能源互联网, 2018, 1(增刊1): 203-212. DOI: 10.19705/j.cnki.issn2096-5125.2018.s1.001.

    YU H Y, ZHANG Y, CHEN Z X, et al. Construction scheme and economic analysis of China-Korea-Japan interconnection project [J]. Journal of global energy interconnection, 2018, 1(Suppl. 1): 203-212. DOI: 10.19705/j.cnki.issn2096-5125.2018.s1.001.
    [4]
    李岩, 罗雨, 许树楷, 等. 柔性直流输电技术: 应用、进步与期望 [J]. 南方电网技术, 2015, 9(1): 7-13. DOI: 10.13648/j.cnki.issn1674-0629.2015.01.002.

    LI Y, LUO Y, XU S K, et al. VSC-HVDC transmission technology: application, advancement and expectation [J]. Southern power system technology, 2015, 9(1): 7-13. DOI: 10.13648/j.cnki.issn1674-0629.2015.01.002.
    [5]
    陆子凯, 简翔浩, 张明瀚. 多端柔性直流配电网的可靠性和经济性评估 [J]. 南方能源建设, 2020, 7(4): 67-74. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.010.

    LU Z K, JIAN X H, ZHANG M H. Research of VSC HVDC application to China southern power grid [J]. Southern energy construction, 2020, 7(4): 67-74. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.010.
    [6]
    徐政. 柔性直流输电系统 (第2版) [M]. 北京: 机械工业出版社, 2017.

    XU Z. Flexible HVDC systems (2nd ed.) [M]. Beijing: China Machine Press, 2017.
    [7]
    黄志秋, 陈冰, 周敏. 海上风电送出工程技术与应用 [M]. 北京: 中国水利水电出版社, 2016.

    HUANG Z Q, CHEN B, ZHOU M. Offshore wind power transmission engineering technology and application [M]. Beijing: China Water & Power Press, 2016.
    [8]
    RAO H. Architecture of Nan'ao multi-terminal VSC-HVDC system and its multi-functional control [J]. CSEE journal of power and energy systems, 2015, 1(1): 9-18. DOI: 10.17775/CSEEJPES.2015.00002.
    [9]
    肖磊石, 盛超, 谭翔宇, 等. 不同类型直流超导限流器的技术经济分析 [J]. 低温与超导, 2020, 48(1): 38-43. DOI: 10.16711/j.1001-7100.2020.01.008.

    XIAO L S, SHENG C, TAN X Y, et al. Technical and economic analysis of different types of superconducting fault current limiters [J]. Cryogenics & superconductivity, 2020, 48(1): 38-43. DOI: 10.16711/j.1001-7100.2020.01.008.
    [10]
    梁飞, 宋萌. 电阻型超导限流器的研究综述 [J]. 云南电力技术, 2018, 46(6): 127-133. DOI: 10.3969/j.issn.1006-7345.2018.06.036.

    LIANG F, SONG M. Review of resistive superconducting fault current limiter [J]. Yunnan electric power, 2018, 46(6): 127-133. DOI: 10.3969/j.issn.1006-7345.2018.06.036.
    [11]
    张翠萍. 高温超导限流器的研究进展 [J]. 中国材料进展, 2017, 36(5): 335-343. DOI: 10.7502/j.issn.1674-3962.2017.05.03.

    ZHANG C P. Progress and status of high temperature superconducting fault current limiter [J]. Materials China, 2017, 36(5): 335-343. DOI: 10.7502/j.issn.1674-3962.2017.05.03.
    [12]
    BOCK J, HOBL A, SCHRAMM J, et al. Resistive superconducting fault current limiters are becoming a mature technology [J]. IEEE transactions on applied superconductivity, 2015, 25(3): 5600604. DOI: 10.1109/tasc.2014.2364916.
    [13]
    GARCIA W R L, TIXADOR B, RAISON B, et al. Technical and economic analysis of the R-type SFCL for HVDC grids protection [J]. IEEE transactions on applied superconductivity, 2017, 27(7): 5602009. DOI: 10.1109/tasc.2017.2739642.
    [14]
    龚珺, 诸嘉慧, 方进, 等. 电阻型高温超导限流器暂态电阻特性分析 [J]. 电工技术学报, 2018, 33(9): 2130-2138. DOI: 10.19595/j.cnki.1000-6753.tces.170310.

    GONG J, ZHU J H, FANG J, et al. Analysis of transient resistance characteristics for resistive type high temperature superconducting fault current limiter [J]. Transactions of China electrotechnical society, 2018, 33(9): 2130-2138. DOI: 10.19595/j.cnki.1000-6753.tces.170310.
    [15]
    诸嘉慧, 陈盼盼, 戴银明, 等. 适用于电阻型超导限流器的超导带材选取与实验研究 [J]. 低温与超导, 2019, 47(12): 52-56. DOI: 10.16711/j.1001-7100.2019.12.011.

    ZHU J H, CHEN P P, DAI Y M, et al. HTS tape selection and test for resistive type superconducting fault current limiter [J]. Cryogenics & superconductivity, 2019, 47(12): 52-56. DOI: 10.16711/j.1001-7100.2019.12.011.
    [16]
    刘路昕, 张京业, 戴少涛, 等. 电阻型超导限流器研发现状及所面临的技术瓶颈 [J]. 低温与超导, 2016, 44(7): 1-5,9. DOI: 10.16711/j.1001-7100.2016.07.001.

    LIU L X, ZHANG J Y, DAI S T, et al. Present status of research and development and technical bottlenecks of resistive superconducting fault current limiter [J]. Cryogenics & superconductivity, 2016, 44(7): 1-5,9. DOI: 10.16711/j.1001-7100.2016.07.001.
    [17]
    DOMMERQUE R, KRÄMER S, HOBL A, et al. First commercial medium voltage superconducting fault-current limiters: production, test and installation [J]. Superconductor science and technology, 2010, 23(3): 034020. DOI: 10.1088/0953-2048/23/3/034020.
    [18]
    SCHMIDT W, GAMBLE B, KRAEMER H P, et al. Design and test of current limiting modules using YBCO-coated conductors [J]. Superconductor science and technology, 2010, 23(1): 014024. DOI: 10.1088/0953-2048/23/1/014024.
    [19]
    KRAEMER H P, SCHMIDT W, CAI H, et al. Superconducting fault current limiter for transmission voltage [J]. Physics procedia, 2012, 36: 921-926. DOI: 10.1016/j.phpro.2012.06.230.
    [20]
    LEE H, LEE J, MOON S. Plenary talk-HTS superconducting wire development and applications in Korea [C]//Proceedings of 2013 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Beijing, China, October 25-27, 2013. Beijing, China: IEEE, 2013: 263-263.
    [21]
    黄炜昭. 220 kV高温超导故障限流器在深圳电网的应用研究 [D]. 广州: 华南理工大学, 2014.

    HUANG W Z. Application of 220 kV high temperature superconducting fault current limiter to the Shenzhen power grid [D]. Guangzhou: South China University of Technology, 2014.
  • Related Articles

    [1]HE Jiaojiao, LI Shutao, ZHANG Shaofeng, WU Jinsong, ZHAO Dening, LIAO Xiao. 3D Digital Design of the Data Center Layout Based on Data Drive[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(S1): 47-55. DOI: 10.16516/j.ceec.2024.S1.08
    [2]LI Xinkai, XIANG Kui, LI Hua, ZHU Guangtao. General Layout Optimization for Fusion Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 63-69. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.008
    [3]Sheng LIU. Research on Compact Layout of Large Capacity Offshore Flexible DC Converter Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 45-50. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.006
    [4]HE Qingdong, ZHU Ruijun, MEI Chun. Discussions on the Main Electrical Wiring Scheme for a 400 MW Offshore Substation Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.013
    [5]FU Guanhui, YE Yuming, ZHANG Tao, LIU Ran, JIANG Haibo. Research on Optimization of Yunnan Funing ±500 kV Convertor Station Layout[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 82-88. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.015
    [6]Weihan HAO, Jinchuan GUO, Yu ZHOU, Hongxin LI. Research on VSC-UHVDC Converter Station Transformer Area Layout[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(3): 67-71. DOI: 10.16516/j.gedi.issn2095-8676.2018.03.010
    [7]HU Rong, CHEN Fei. 220 kV GIS Compact Indoor Layout Research with Overhead Line[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(S1): 73-77,83. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.014
    [8]Qi LAI. Comparison of Oil Tank Layout Design in Chinese and American Codes[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 101-104. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.021
    [9]ZHU Caifeng. Discussion on General Layout Characteristics of ″Developing Large Units and Suppressing Small Ones″ Rebuilding Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 135-139. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.030
    [10]Ming ZHENG. Electrical Single-line Diagram Design of a 300 MW Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 62-66. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.012
  • Cited by

    Periodical cited type(5)

    1. 赵航,贾静,杨哲,张力月,杨磊,陈团. 平台式无人机强耦合无线电能传输方法. 南方能源建设. 2025(02): 158-168 . 本站查看
    2. 李建立,黄显斌,李勇,高红均,曾晓璞,单俊嘉,刘青雨. 基于ADMM与GSP方法的产消者群日前-实时两阶段电能交易方法. 电力建设. 2024(06): 1-9 .
    3. 李雷,聂荟扬. 绿氢市场培育政策设计与应用. 现代化工. 2024(10): 15-20 .
    4. 李奇,霍莎莎,蒲雨辰,陈维荣. 面向含氢综合能源系统的电-碳-氢耦合交易市场研究综述. 电力自动化设备. 2023(12): 175-187 .
    5. 杨旭,王文军,薄雅婕. 电-碳市场协同运行研究现状综述与展望. 广东电力. 2023(11): 57-63 .

    Other cited types(2)

Catalog

    GUO Jinchuan

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (409) PDF downloads (194) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return