-
燃煤机组耦合双储能系统的典型应用情况如表1所示。
表 1 燃煤机组耦合双储能系统的应用情况
Table 1. Application comparison of dual storage type systems
目前,在新能源电力嵌入下,通过燃煤机组耦合双储能系统参与调峰的典型项目处于示范阶段,储能系统在新型电力系统中运行后,会给发电企业、电网公司、电力用户等利益主体带来显著的外部价值,例如提升传统火电机组的运行效率,减少燃料成本;减小高峰负荷对电力系统带来的压力;减少排放;促进新型电力系统从外延扩张型向内涵增效型转变等[38-39]。尽管通过表1可以看到,当双储能耦合燃煤机组在新能源系统中的运行策略得到充分优化时,可以有效改善一部分技术经济性问题,但由于储能系统的原材料储量、循环寿命及淘汰后设备和材料回收等问题导致的高成本问题,仍然是制约其大规模商业化应用的主要原因,尚需时间与技术迭代[40]。
尽管燃煤机组耦合双储能系统已有多项示范应用,距离其大规模商业化还存在来自储能技术的攻关挑战。其中,对于双储能系统在运行策略的配合及优化调度、储能容量配置及优化、功率分配等问题,仍是未来重要的研究方向。此外,储能技术本身的发展突破也同样重要,例如循环寿命、安全问题、成本问题、原材料存量以及回收问题则几乎是制约所有蓄电池储能推广的原因。要解决这些问题,可以通过明确政策导向,建设示范工程,建立长效机制,积极促进成本疏导等,来引领技术不断进步,有效推动产业应用[41]。
Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System
-
摘要:
目的 随着新能源电力消费比例不断提高,燃煤机组耦合双储能技术的能源系统发展受到广泛关注。 方法 文章基于能源系统组成、储能技术特性、项目示范情况以及技术瓶颈等方面的分析,针对风电、光伏嵌入下双储能技术耦合燃煤机组参与电力系统调峰应用开展了运行控制策略研究。 结果 双储能技术耦合燃煤机组可通过不同的结构组成、运行策略优化有效解决新能源系统运行稳定性、能源高效利用以及技术经济性等问题,但目前尚未到实现大规模商业化应用阶段。 结论 双储能耦合燃煤机组在新能源系统中的推广应用,需要对双储能技术的策略优化及储能技术本身的发展突破方面不断开展工作。 Abstract:Introduction With the increasing proportion of new energy power consumption, the development of energy systems with coal-fired units coupled with dual energy storage technology has received wide attention. Method Based on a systematic analysis method in terms of energy system composition, energy storage technology characteristics, applications, technical bottlenecks, etc., an operational control strategy study was carried out for coal-fired units coupled with dual energy storage technology under wind power and photovoltaic embedding to participate in power system peaking applications. Result It is found that a dual energy storage system coupled with the coal-fired unit can effectively solve the operation stability, efficient energy utilization, and technology economic issues of new energy systems through different structural compositions and optimization of operation strategies. However, this integration system has not reached the stage of large-scale commercial application. Conclusion The promotion and application of dual energy storage coupled with the coal-fired unit in new energy systems require continuous work on the strategic optimization of dual energy storage technology and the development of energy storage technology itself. -
Key words:
- dual energy storage /
- coal-fired unit /
- new energy /
- flexible adjustment /
- operation strategy
-
表 1 燃煤机组耦合双储能系统的应用情况
Tab. 1. Application comparison of dual storage type systems
-
[1] 汪宁渤, 马明, 强同波, 等. 高比例新能源电力系统的发展机遇、挑战及对策 [J]. 中国电力, 2018, 51(1): 29-35+50. DOI: 10.11930/j.issn.1004-9649.201711248. WANG N B, MA M, QIANG T B, et al. High-penetration new energy power system development: challenges, opportunities and countermeasures [J]. Electric Power, 2018, 51(1): 29-35+50. DOI: 10.11930/j.issn.1004-9649.201711248. [2] 杨帆, 张晶杰. 碳达峰碳中和目标下我国电力行业低碳发展现状与展望 [J]. 环境保护, 2021, 49(Supp.2): 9-14. DOI: 10.14026/j.cnki.0253-9705.2021.z2.001. YANG F, ZHANG J J. The status and prospect of low-carbon development of electric power industry in China under carbon peak and carbon neutrality targets [J]. Environmental Protection, 2021, 49(Supp.2): 9-14. DOI: 10.14026/j.cnki.0253-9705.2021.z2.001. [3] 张正陵. 中国“十三五”新能源并网消纳形势、对策研究及多情景运行模拟分析 [J]. 中国电力, 2018, 51(1): 1-9. DOI: 10.11930/j.issn.1004-9649.201711237. ZHANG Z L. Research on situation and countermeasures of new energy integration in the 13th Five-Year Plan period and its multi-scenario simulation [J]. Electric Power, 2018, 51(1): 1-9. DOI: 10.11930/j.issn.1004-9649.201711237. [4] 王金星. 大型燃煤热电联产系统研究现状和展望 [J]. 华北电力大学学报(自然科版), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. WANG J X. Research status and outlook of large coal-fired cogeneration system [J]. Journal of North China Electric Power University (Natural Science Edition), 2019, 46(6): 90-98. DOI: 10.3969/j.ISSN.1007-2691.2019.06.12. [5] 郭丰慧, 胡林献, 周升彧. 基于二级热网储热式电锅炉调峰的弃风消纳调度模型 [J]. 电力系统自动化, 2018, 42(19): 50-56. DOI: 10.7500/AEPS20180130009. GUO F H, HU L X, ZHOU S Y. Dispatching model of wind power accommodation based on heat storage electric boiler for peak-load regulation in secondary heat supply network [J]. Automation of Electric Power Systems, 2018, 42(19): 50-56. DOI: 10.7500/AEPS20180130009. [6] 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析 [J]. 储能科学与技术, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. HE L X, LI W Y. Simulation of the primary frequency modulation process of thermal power units with the auxiliary of flywheel energy storage [J]. Energy Storage Science and Technology, 2021, 10(5): 1679-1686. DOI: 10.19799/j.cnki.2095-4239.2021.0283. [7] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001. ZHANG D H, XU W H, MEN K, et al. Energy storage technology application scenarios and key issues of development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.001. [8] 任大伟, 金晨, 侯金鸣, 等. 基于时序运行模拟的新能源配置储能替代火电规划模型 [J]. 中国电力, 2021, 54(7): 18-26. DOI: 10.11930/j.issn.1004-9649.202009017. REN D W, JIN C, HOU J M, et al. A planning model for new energy allocation storage to replace thermal power based on time-series operation simulation [J]. Electric Power, 2021, 54(7): 18-26. DOI: 10.11930/j.issn.1004-9649.202009017. [9] 马会萌, 李蓓, 李建林, 等. 面向经济评估的电池储能系统工况特征量嵌入性研究 [J]. 电力系统保护与控制, 2017, 45(22): 70-77. DOI: 10.7667/PSPC161724. MA H M, LI B, LI J L, et al. Research on the embeddedness of the characteristic quantity of the working condition of battery energy storage system for economic evaluation [J]. Power System Protection and Control, 2017, 45(22): 70-77. DOI: 10.7667/PSPC161724. [10] LI Y H, WANG J X, GU C J, et al. Investment optimization of grid-scale energy storage for supporting different wind power utilization levels [J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(6): 1721-1734. DOI: 10.1007/s40565-019-0530-9. [11] 李笑竹, 王维庆, 王海云, 等. 基于鲁棒优化的风光储联合发电系统储能配置策略 [J]. 太阳能学报, 2020, 41(8): 67-78. LI X Z, WANG W Q, WANG H Y, et al. Energy storage allocation strategy of wind-solar-storage combined system based on robust optimization [J]. Journal of Solar Energy, 2020, 41(8): 67-78. [12] 刘宇宸. 飞轮-蓄电池混合储能系统调频特性研究 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu.2021.001388. LIU Y C. Research on frequency modulation characteristics of flywheel-battery hybrid energy storage system [D]. Beijing: North China Electric Power University (Beijing), 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.001388. [13] 杨子龙, 宋振浩, 潘静, 等. 分布式光伏/储能系统多运行模式协调控制策略 [J]. 中国电机工程学报, 2019, 39(8): 2213-2220. DOI: 10.13334/j.0258-8013.pcsee.182342. YANG Z L, SONG Z H, PAN J, et al. Multi-operation mode coordination control strategy for distributed PV/energy storage system [J]. Chinese Journal of Electrical Engineering, 2019, 39(8): 2213-2220. DOI: 10.13334/j.0258-8013.pcsee.182342. [14] 邢志同. 电池储能协调电采暖消纳弃风的运行控制与配置优化 [D]. 吉林: 东北电力大学, 2018. XING Z T. Operational control and configuration optimization of battery energy storage coordinating with electric heating to consume wind curtailment [D]. Jilin: Northeast Electric Power University, 2018. [15] 李军徽, 付英男, 李翠萍, 等. 提升风电消纳的储热电混合储能系统经济优化配置 [J]. 电网技术, 2020, 44(12): 4547-4557. DOI: 10.13335/j.1000-3673.pst.2020.0185a. LI J H, FU Y N, LI C P, et al. Economic optimal configuration of hybrid energy storage system for improving wind power consumption [J]. Power System Technology, 2020, 44(12): 4547-4557. DOI: 10.13335/j.1000-3673.pst.2020.0185a. [16] 付英男. 提高风电消纳的热电混合储能系统优化控制与配置 [D]. 吉林: 东北电力大学, 2020. DOI: 10.27008/d.cnki.gdbdc.2020.000187. FU Y N. Optimal method of control and configuration for thermo/electric hybrid energy storage system to improving wind power integration [D]. Jilin: Northeast Electric Power University, 2020. DOI: 10.27008/d.cnki.gdbdc. 2020. 000187. [17] 朱炳铨, 钱韦廷, 张俊, 等. 考虑风电消纳的电热混合储能系统优化定容方法 [J]. 电力建设, 2020, 41(12): 16-24. DOI: 10.12204/j.issn.1000-7229.2020.12.002. ZHU B Q, QIAN W T, ZHANG J, et al. Optimal capacity setting method of electric-thermal hybrid energy storage system considering wind power consumption [J]. Power Construction, 2020, 41(12): 16-24. DOI: 10.12204/j.issn.1000-7229.2020.12.002. [18] 李敏超, 杨俊友, 韩子娇, 等. 计及电热混合储能的风电消纳低碳经济调度模型研究 [J]. 东北电力技术, 2020, 41(5): 53-59+62. DOI: 10.3969/j.issn.1004-7913.2020.05.014. LI M C, YANG J Y, HAN Z J, et al. Study on low-carbon economic dispatching model for wind power accommodation with electrothermal hybrid energy storage [J]. Northeast Electric Power Technology, 2020, 41(5): 53-59+62. DOI: 10.3969/j.issn.1004-7913.2020.05.014. [19] 杨玉龙, 李湃, 黄越辉, 等. 面向弃风消纳的电储能-热电分级协调优化方法 [J]. 中国电力, 2020, 53(12): 127-135. DOI: 10.11930/j.issn.1004-9649.202002130. YANG Y L, LI P, HUANG Y H, et al. A hierarchical and coordinated optimization method of electric energy storage and thermoelectric power for abandoned wind power consumption [J]. Electric Power, 2020, 53(12): 127-135. DOI: 10.11930/j.issn.1004-9649.202002130. [20] WANG H C, YIN W S, ABDOLLAHI E. , et al. Modelling and optimization of CHP based district heating system with renewable energy production and energy storage [J]. Applied energy, 2015, 159(Dec.1): 401-421. DOI: 10.1016/j.apenergy.2015.09.020. [21] KASTURI K. , NAYAK C. K. , PATNAIK S. , et al Strategic integration of photovoltaic, battery energy storage & amp; switchable capacitor for multi-objective optimization of low voltage electricity grid: assessing grid benefits [J]. Renewable Energy Focus, 2022(prepublish). DOI: 10.1016/j.ref.2022.02.006. [22] LI P, HU Q Y, SUN Y, et al. Thermodynamic and economic performance analysis of heat and power cogeneration system based on advanced adiabatic compressed air energy storage coupled with solar auxiliary heat [J]. Journal of Energy Storage, 2021, 42: 103089. DOI: 10.1016/j.est.2021.103089. [23] 胡基栋. 光储直流微电网运行协调控制技术研究 [D]. 呼和浩特: 内蒙古工业大学, 2021. DOI: 10.27225/d.cnki.gnmgu.2021.000462. HU J D. Research on operation coordination control technology of photovoltaic and storage DC microgrid [D]. Hohhot: Inner Mongolia University of Technology, 2021. DOI: 10.27225/d.cnki.gnmgu.2021. 000462. [24] 乔亮波, 张晓虎, 孙现众, 等. 电池-超级电容器混合储能系统研究进展 [J]. 储能科学与技术, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. QIAO L B, ZHANG X H, SUN X Z, et al. Research progress of battery-supercapacitor hybrid energy storage system [J]. Energy Storage Science and Technology, 2022, 11(1): 98-106. DOI: 10.19799/j.cnki.2095-4239.2021.0229. [25] 姚海涛. 混合储能在风光互补发电系统中的容量优化研究 [D]. 镇江: 江苏大学, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001832. YAO H T. Capacity optimization of hybrid energy storage in wind solar hybrid power generation system [D]. Zhenjiang: Jiangsu University, 2021. DOI: 10.27170/d.cnki.gjsuu.2021.001832. [26] 吴瑞鹏, 张程翔. 基于混合储能的风光储联合发电系统优化研究 [J]. 应用能源技术, 2022(3): 47-51. DOI: 10.3969/j.issn.1009-3230.2022.03.014. WU R P, ZHANG C X. Research on optimization of wind-solar- storage hybrid generation systems based on hybrid energy storage [J]. Applied Energy Technology, 2022(3): 47-51. DOI: 10.3969/j.issn.1009-3230.2022.03.014. [27] GUO S, HE Y, PEI H, et al. The multi-objective capacity optimization of wind-photovoltaic-thermal energy storage hybrid power system with electric heater [J]. Solar Energy, 2020, 195: 138-149. DOI: 10.1016/j.solener.2019.11.063. [28] 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议 [J]. 中国科学院院刊, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. ZHENG Q, JIANG L X, XU Y J, et al. Research progress and development suggestions on energy storage technology in the context of carbon peaking and carbon neutrality [J]. Journal of the Chinese Academy of Sciences, 2022, 37(4): 529-540. DOI: 10.16418/j.issn.1000-3045.20220311001. [29] 刘胜崇, 帕孜来·马合木提, 葛震君. 基于模糊控制的蓄电池系统储能单元SOC均衡方法 [J]. 现代电子技术, 2020, 43(24): 135-139. DOI: 10.16652/j.issn.1004-373x.2020.24.034. LIU S C, PAZILAI M, GE Z J. Fuzzy control-based SOC equalization method for battery system energy storage unit [J]. Modern Electronics Technology, 2020, 43(24): 135-139. DOI: 10.16652/j.issn.1004-373x.2020.24.034. [30] 史永胜, 王雪丽, 李娜, 等. 用于蓄电池储能的双向DC-DC变换器的实现 [J]. 电子器件, 2018, 41(2): 329-332. DOI: 10.3969/j.issn.1005-9490.2018.02.010. SHI Y S, WANG X L, LI N, et al. Implementation of a bidirectional DC-DC converter for battery energy storage [J]. Electronic Devices, 2018, 41(2): 329-332. DOI: 10.3969/j.issn.1005-9490.2018.02.010. [31] 陈海生, 李泓, 马文涛, 等. 2021年中国储能技术研究进展 [J]. 储能科学与技术, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. CHEN H S, LI H, MA W T, et al. Research progress of energy storage technology in China in 2021 [J]. Energy Storage Science and Technology, 2022, 11(3): 1052-1076. DOI: 10.19799/j.cnki.2095-4239.2022.0105. [32] 张健, 徐玉杰, 李斌, 等. 分布式热电联产系统装机容量及运行策略分析 [J]. 储能科学与技术, 2019, 8(1): 83-91. DOI: 10.12028/j.issn.2095-4239.2018.0190. ZHANG J, XU Y J, LI B, et al. Analysis of installed capacity and operation strategy of distributed cogeneration system [J]. Energy Storage Science and Technology, 2019, 8(1): 83-91. DOI: 10.12028/j.issn.2095-4239.2018.0190. [33] 周科, 李银龙, 李明皓, 等. 燃煤发电-物理储热耦合技术研究进展与系统调峰能力分析 [J]. 洁净煤技术, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501. ZHOU K, LI Y L, LI M H, et al. Research progress of coal-fired power generation-physical thermal storage coupling technology and analysis of system peaking capacity [J]. Clean Coal Technology, 2022, 28(3): 159-172. DOI: 10.13226/j.issn.1006-6772.CC22010501. [34] 车泉辉, 吴耀武, 祝志刚, 等. 基于碳交易的含大规模光伏发电系统复合储能优化调度 [J]. 电力系统自动化, 2019, 43(3): 76-82+154. DOI: 10.7500/AEPS20180113002. CHE Q H, WU Y W, ZHU Z G, et al. Optimal dispatching of composite energy storage with large-scale photovoltaic power generation system based on carbon trading [J]. Power System Automation, 2019, 43(3): 76-82+154. DOI: 10.7500/AEPS20180113002. [35] 仵华南, 李华东, 李昌卫, 等. 用混合储能辅助核电一次调频控制策略研究 [J]. 山东电力技术, 2022, 49(3): 14-19. DOI: 10.3969/j.issn.1007-9904.2022.03.003. WU H N, LI H D, LI C W, et al. Research on primary frequency control strategy of nuclear power generation with hybrid energy storage assistance [J]. Shandong Power Technology, 2022, 49(3): 14-19. DOI: 10.3969/j.issn.1007-9904.2022.03.003. [36] 韩健民, 薛飞宇, 梁双印, 等. 模糊控制优化下的混合储能系统辅助燃煤机组调频仿真研究 [J]. 储能科学与技术: 1-12. DOI: 10.19799/j.cnki.2095-4239.2021.0664. HAN J M, XUE F Y, LIANG S Y, et al. Simulation study of hybrid energy storage system assisted coal-fired unit frequency regulation under fuzzy control optimization [J]. Energy Storage Science and Technology: 1-12. DOI: 10.19799/j.cnki.2095-4239.2021.0664. [37] 杨文强, 常彬. 计及多影响因素的发电侧混合储能系统容量配置方法及配置工具研究 [J/OL]. 储能科学与技术: 1-13. (2022-04-08) [2022-07-30]. DOI: 10.19799/j.cnki.2095-4239.2022.0065. https://esst.cip.com.cn/CN/Y2022/V/I/1. YANG W Q, CHANG B. Capacity allocation methods and allocation tools for generation-side hybrid energy storage systems with multiple influencing factors [J]. Energy Storage Science and Technology: 1-13. (2022-04-08) [2022-07-30]. DOI: 10.19799/j.cnki.2095-4239.2022.0065. https://esst.cip.com.cn/CN/Y2022/V/I/1. [38] DING J, XU Y J, CHEN H S, et al. Value and economic estimation model forgrid-scale energy storage in monopoly power markets [J]. Applied Energy, 2019, 240(Apr.15): 986-1002. DOI: 10.1016/j.apenergy.2019.02.063. [39] ZHAO H R, LU H, WANG X J, et al. Research on comprehensive value of electrical energy storage in CCHP microgrid with renewable energy based on robust optimization [J]. Energies, 2020, 13(24): 6526. DOI: 10.3390/en13246526. [40] 陆昊. 新型电力系统中储能配置优化及综合价值测度研究 [D]. 北京: 华北电力大学(北京), 2021. DOI: 10.27140/d.cnki.ghbbu. 2021.000086. LU H. Research on the energy storage plan optimization and comprehensive value measurement in the new power system [D]. Beijng: North China Electric Power University (Beijing), 2021. DOI: 10.27140/ d.cnki.ghbbu.2021.000086. [41] 陈海生, 刘畅, 徐玉杰, 等. 储能在碳达峰碳中和目标下的战略地位和作用 [J]. 储能科学与技术, 2021, 10(5): 1477-1485. DOI: 10.19799/j.cnki.2095-4239.2021.0389. CHEN H S, LIU C, XU Y J, et al. The strategic position and role of energy storage under the goal of carbon peak and carbon neutrality [J]. Energy Storage Science and Technology, 2021, 10(5): 1477-1485. DOI: 10.19799/j.cnki.2095-4239.2021.0389.