Advanced Search
LU Pei, LI Xiaobao, ZHENG Chenxu, ZOU Luyao, WANG Xinyao, JIANG Jiayue, HU Jun, ZHOU Xing. Analysis on Operation Characteristics of 350 MW Waste Heat Boiler Under Variable Working Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 41-49. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.005
Citation: LU Pei, LI Xiaobao, ZHENG Chenxu, ZOU Luyao, WANG Xinyao, JIANG Jiayue, HU Jun, ZHOU Xing. Analysis on Operation Characteristics of 350 MW Waste Heat Boiler Under Variable Working Conditions[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 41-49. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.005

Analysis on Operation Characteristics of 350 MW Waste Heat Boiler Under Variable Working Conditions

More Information
  • Received Date: May 20, 2022
  • Revised Date: June 19, 2022
  • Accepted Date: July 29, 2022
  • Available Online: September 25, 2022
  •   Introduction  Integrated Gasification Combined Cycle (IGCC) power generation technology is a high-efficiency and low-carbon power generation technology. A waste heat boiler is one of the components of IGCC. This paper aims to study the off-design operating characteristics of waste heat boilers and improve the efficiency of integrated coal gasification combined cycle power generation technology.
      Method  The working principle and heat and mass transfer principle of the waste heat boiler were mainly analyzed by MATLAB software to carry out programming calculations to explore the relationship between feed water temperature, feed water pressure, liquid-phase heat transfer coefficient, gas-phase heat transfer coefficient and heat absorption in waste heat boiler.
      Result  The results show that when the liquid-phase heat transfer coefficient is in the range of 200~1 000 W/(m2·K) and the gas-phase heat transfer coefficient is in the range of 20~100 W/(m2·K), as if the feed water temperature increases from 30 ℃ to 100 ℃ or the feed water pressure increases, the heat absorption of the waste heat boiler decreases continuously. In case the feed water temperature is in the range of 30~100 ℃, when the liquid phase heat transfer coefficient increases from 200 W/(m2·K) to 1 000 W/(m2·K) or the gas phase heat transfer coefficient increases from 20 W/(m2·K) to 100 W/(m2·K), the heat absorption of the waste heat boiler increases continuously.
      Conclusion  Under the condition that liquid-phase heat transfer coefficient and gas-phase heat transfer coefficient remain unchanged, the feed water temperature or pressure increases, and the heat absorption capacity of the waste heat boiler will decrease; While the feed water temperature and pressure remain unchanged, the liquid-phase heat transfer coefficient or gas-phase heat transfer coefficient increases, and the heat absorption capacity of the waste heat boiler will increase.
  • [1]
    姚妹铭, 付国. 电力新能源与生态环境−评《电力环保政策法规汇编》 [J]. 环境工程, 2020, 38(10): 246.

    YAO M M, FU G. New energy of electric power and ecological environment——Comment on the compilation of electric power environmental protection policies and regulations [J]. Environmental engineering, 2020, 38(10): 246.
    [2]
    张甲, 席静, 胡久平. 新能源技术的研究综述 [J]. 山东化工, 2018, 47(19): 75+83. DOI: 10.3969/j.issn.1008-021X.2018.19.029.

    ZHANG J, XI J, HU J P. Research summary on new energy technology [J]. Shandong Chemical Industry, 2018, 47(19): 75+83. DOI: 10.3969/j.issn.1008-021X.2018.19.029.
    [3]
    严辉. 整体煤气化联合循环发电系统技术研究综述 [J]. 化学工程与装备, 2015(2): 155-157.

    YAN H. Summary of research on integrated coal gasification combined cycle power generation system [J]. Chemical Engineering & Equipment, 2015(2): 155-157.
    [4]
    厉剑梁. 燃气-蒸汽联合循环机组余热锅炉优化研究 [D]. 北京: 华北电力大学(北京), 2017.

    LI J L. Study on optimization of heat recovery steam generator for gas-steam combined cycle unit [D]. Beijing: North China Electric Power University(Beijing), 2017.
    [5]
    王颖, 邱朋华, 吴少华, 等. IGCC系统中余热锅炉的优化研究 [J]. 电站系统工程, 2009, 25(5): 31-32+35. DOI: 10.3969/j.issn.1005-006X.2009.05.013.

    WANG Y, QIU P H, WU S H, et al. Study on optimization of HRSG in IGCC system [J]. Power System Engineering, 2009, 25(5): 31-32+35. DOI: 10.3969/j.issn.1005-006X.2009.05.013.
    [6]
    刘传成. 燃气-蒸汽联合循环双压、三压再热余热锅炉性能分析 [J]. 科技风, 2020(25): 106-107. DOI: 10.19392/j.cnki.1671-7341.202025053.

    LIU C C. Comparison and analyses of dual and triple pressure HRSG performance in combined cycle power plant [J]. Technology Wind, 2020(25): 106-107. DOI: 10.19392/j.cnki.1671-7341.202025053.
    [7]
    沈桂男. 三压再热余热锅炉及运行 [C]//中国电机工程学会. 大型燃气轮机发电技术发展学术研讨会, 杭州, 2005-10-17. 北京: 中国电机工程学会, 2006: 206-212.

    SHEN G N. Three pressure reheat waste heat boiler and its operation [C]//CSEE. Academic Seminar on the Development of Large Gas Turbine Power Generation Technology, Hangzhou, October 17, 2005. Beijing: CSEE, 2006: 206-212.
    [8]
    陈俊, 徐民. 400 MW级燃气-蒸汽联合循环机组余热锅炉调试技术与实践 [J]. 上海节能, 2019(10): 858-863. DOI: 10.13770/j.cnki.issn2095-705x.2019.10.012.

    CHEN J, XU M. Commissioning technology and practice on heat residual boilers in 400 MW gas-steam combined circulation unit [J]. Shanghai Energy Conservation, 2019(10): 858-863. DOI: 10.13770/j.cnki.issn2095-705x.2019.10.012.
    [9]
    陈维春, 李素芬. 余热锅炉动态特性的数值计算 [J]. 节能, 2002(3): 8-10+2. DOI: 10.3969/j.issn.1004-7948.2002.03.003.

    CHEN W C, LI S F. Numerical calculation of dynamic performance of dual-pressure heat recovery steam generator [J]. Energy Conservation, 2002(3): 8-10+2. DOI: 10.3969/j.issn.1004-7948.2002.03.003.
    [10]
    黄文波, 林汝谋, 肖云汉, 等. 联合循环中余热锅炉及其热力特性分析 [J]. 燃气轮机技术, 1996, 9(4): 21-30. DOI: 10.16120/j.cnki.issn1009-2889.1996.04.004

    HUANG W B, LIN R M, XIAO Y H, et al. Analysis of waste heat boiler and its thermal characteristics in combined cycle [J]. Gas Turbine Technology, 1996, 9(4): 21-30. DOI: 10.16120/j.cnki.issn1009-2889.1996.04.004
    [11]
    吕太, 郭耀德, 霍利, 等. 350 MW级燃气-蒸汽联合循环电站余热锅炉配置 [J]. 华北电力技术, 2006(10): 9-11+19. DOI: 10.3969/j.issn.1003-9171.2006.10.003.

    LÜ T, GUO Y D, HUO L, et al. Heat recovery steam generator choice of 350 MW class combined cycle power plant [J]. North China Electric Power, 2006(10): 9-11+19. DOI: 10.3969/j.issn.1003-9171.2006.10.003.
    [12]
    聂宇宏, 梁融, 钱飞舟, 等. 高炉煤气余热锅炉数值模拟与传热系数的修正 [J]. 江苏科技大学学报(自然科学版), 2014, 28(1): 46-49. DOI: 10.3969/j.issn.1673-4807.2014.01.009.

    NIE Y H, LIANG R, QIAN F Z, et al. Numerical simulation of BFG waste heat boiler and correction of its heat transfer coefficient [J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2014, 28(1): 46-49. DOI: 10.3969/j.issn.1673-4807.2014.01.009.
    [13]
    郁鸿凌, 杜艳艳, 葛卫东, 等. 对干熄焦余热锅炉热力计算中传热系数的探讨 [J]. 工业锅炉, 2009(2): 14-17. DOI: 10.3969/j.issn.1004-8774.2009.02.003.

    YU H L, DU Y Y, GE W D, et al. Discussion on the heat transfer coefficient in thermal calculation of CDQ waste-heat boiler [J]. Industrial Boiler, 2009(2): 14-17. DOI: 10.3969/j.issn.1004-8774.2009.02.003.
  • Related Articles

    [1]LIU Ming, YANG Xuebing, ZHANG Xuewen, HUANG Zhenrong, BU Zhongjie. Experimental Analysis on Friction Characteristics of MW Wind Turbine Generator Yaw Braking System[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 83-90. DOI: 10.16516/j.ceec.2023-296
    [2]YIN Qin, GUO Jinchuan. Research on the Design of Operating Condition of Multi-Resistance Superconducting DC Current Limiter[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 17-23. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.003
    [3]CHEN Jiangtao, LI Qiang, PENG Dan, WU Ke, SUN Weimin. Research on the Retrofit Scheme of 660 MW Unit Boiler for Stable Combustion[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 148-152. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.018
    [4]JIANG Lin, YANG Haoran, GUO Ziyan, LIU Shuang, ZHANG Jieyu, HUANG Zhanping, ZHOU Xing. Steady-State Operation Characteristics of 100 MW Class Steam Turbine System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 111-118. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.013
    [5]Xuanhui LI. Discussion on Optimization Design of 2×350 MW Supercritical Unit's Main Plant Arrangement[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S2): 89-95. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.014
    [6]Shi Tao, Wu Afeng, FAN Xiaoru, HUO Peiqiang. Analysis on Single or Double Row Fan Configuration for a 350 MW Heat Supply Unit[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 59-63. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.009
    [7]GAO Huiyun, HUO Peiqiang. Feasibility Reascher on Ultra-supercritical 350 MW Unit and Analysis of Main Equipment Parameter[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 47-53. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.007
    [8]PEI Shun, YANG Gui. Research on Safe and Stable Operation Under Lower Load Condition for Coal-fired Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 19-24. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.004
    [10]Xinghu PENG. Optimizing and Analysis for Main Power Building Arrangement of Power Plant with 350 MW Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.011
  • Cited by

    Periodical cited type(6)

    1. 王巧丽,张俊霞,李阳,邓飞龙. 新的PHEV动力匹配控制方法设计与应用. 时代汽车. 2024(02): 90-93 .
    2. 刘波,吴晖彤,陈翀. 一种新型PHEV模糊控制能量管理策略研究. 机械设计与制造. 2024(03): 320-325 .
    3. 王超,陈奇,谷新梅,姜湖,郭芳,黄广山,祝姗姗. 基于麻雀优化算法的锂电池健康状态估计方法. 南方能源建设. 2023(06): 89-97 . 本站查看
    4. 王健力. 浅谈电动车辆动力电池的性能特点及其发展. 科技风. 2019(03): 150 .
    5. 郝越. 电动汽车无序充电的影响分析. 通信电源技术. 2019(11): 94-96+100 .
    6. 李阳,吴伟杰,林勇,高崇,吴亚雄,何璇. 考虑电动汽车行驶特性的工业园区电动汽车充电设施规划. 南方能源建设. 2018(S1): 7-14 . 本站查看

    Other cited types(3)

Catalog

    Corresponding author: ZHOU Xing, zhoux@hebtu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (700) PDF downloads (70) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return