Advanced Search
LI Xiuhai, MAO Jianhui, LUO Chuanlong, et al. Analysis of spar cap damage of wind turbine blades and reliability verification of repair scheme [J]. Southern energy construction, 2025, 12(2): 71-78. DOI: 10.16516/j.ceec.2023-235
Citation: LI Xiuhai, MAO Jianhui, LUO Chuanlong, et al. Analysis of spar cap damage of wind turbine blades and reliability verification of repair scheme [J]. Southern energy construction, 2025, 12(2): 71-78. DOI: 10.16516/j.ceec.2023-235

Analysis of Spar Cap Damage of Wind Turbine Blades and Reliability Verification of Repair Scheme

More Information
  • Received Date: August 21, 2023
  • Revised Date: October 16, 2023
  • Available Online: March 25, 2025
  •   Objective  Wrinkle is a kind of defect that may occur in the manufacturing process of wind turbine blades. It may cause the strength of the blade to decrease, and in serious cases, cracks will be produced and lead to blade fracture, how to repair the wrinkle defects and verify the structural safety of the blade after repair is the focus of this paper.
      Method  The blade of a megawatt-class unit of wind farm with spar cap wrinkling damage was selected as the research object. Firstly, the blade three-dimensional structural model and finite element model were established, and the blade buckling stability and the permissible number of spar cap were analyzed through finite element simulation; then, the wrinkle height was predicted through the strength loss ratio of glass fiber reinforced plastic (FRP), and a repair scheme was formulated; finally, the reliability of the repair scheme was verified through the full-size static and fatigue tests of the blade.
      Reslut   The results show that the spar cap would not have buckling instability and fatigue failure if there is no wrinkling defect; the repaired blade passed the static and fatigue tests.
      Conclusion  The repair scheme formulated based on the FRP strength loss ratio has a certain degree of reliability and provides a reference for the repair of wind turbine blade spar cap wrinkle.
  • [1]
    卓鹏, 刘强, 赵龙, 等. 复合材料褶皱与试件性能的关系研究 [J]. 航空制造技术, 2014(15): 101-102, 105. DOI: 10.16080/j.issn1671-833x.2014.15.014.

    ZHUO P, LIU Q, ZHAO L, et al. Experimental investigation on the rrelationship between wrinkles and properties of composite laminates [J]. Aeronautical manufacturing technology, 2014(15): 101-102, 105. DOI: 10.16080/j.issn1671-833x.2014.15.014.
    [2]
    王冰佳, 赵勇, 王杰彬. 风力机叶片褶皱机理及预防措施研究 [J]. 电站系统工程, 2018, 34(1): 62-64.

    WANG B J, ZHAO Y, WANG J B. Study on mechanism and precaution of fold in wind turbine blade [J]. Power system engineering, 2018, 34(1): 62-64.
    [3]
    赵春妮, 刘清, 陈文光, 等. 不同尺寸褶皱对风电叶片主梁性能的影响研究 [J]. 风能, 2020(5): 90-93. DOI: 10.3969/j.issn.1674-9219.2020.05.027.

    ZHAO C N, LIU Q, CHEN W G, et al. Research on the effect of different size folds on the performance of wind turbine blade main beam [J]. Wind energy, 2020(5): 90-93. DOI: 10.3969/j.issn.1674-9219.2020.05.027.
    [4]
    高康, 陶伟文, 刘奇星, 等. 典型叶根褶皱对风电叶片强度影响的初步研究 [J]. 玻璃钢/复合材料, 2017(10): 58-61. DOI: 10.3969/j.issn.1003-0999.2017.10.010.

    GAO K, TAO W W, LIU Q X, et al. Initial study of effects on strength of wind turbine blade with typical root waviness [J]. Fiber reinforced plastics/composites, 2017(10): 58-61. DOI: 10.3969/j.issn.1003-0999.2017.10.010.
    [5]
    靳交通, 邓航, 侯彬彬, 等. 风电叶片试验中褶皱的影响分析及修补方案的可靠性验证 [J]. 机械设计与研究, 2020, 36(3): 56-59. DOI: 10.13952/j.cnki.jofmdr.2020.0102.

    JIN J T, DENG H, HOU B B, et al. Influences analysis of wrinkles and reliability verification of repair method in the wind turbine blade test [J]. Machine design & research, 2020, 36(3): 56-59. DOI: 10.13952/j.cnki.jofmdr.2020.0102.
    [6]
    沈臣, 周勃, 李菲, 等. 褶皱对风力机叶片主梁复合材料疲劳性能研究 [J]. 重型机械, 2022(1): 36-39. DOI: 10.13551/j.cnki.zxjxqk.2022.01.007.

    SHEN C, ZHOU B, LI F, et al. Study on the effect of folds on the fatigue properties of wind turbine blade girder composite materials [J]. Heavy machinery, 2022(1): 36-39. DOI: 10.13551/j.cnki.zxjxqk.2022.01.007.
    [7]
    何成智, 马小军, 李阳阳, 等. 褶皱对玻璃钢疲劳性能的影响 [J]. 玻璃钢/复合材料, 2017(10): 53-57. DOI: 10.3969/j.issn.1003-0999.2017.10.009.

    HE C Z, MA X J, LI Y Y, et al. The effect of folding on the fatigue properties of glass fiber reinforced plastics [J]. Fiber reinforced plastics/composites, 2017(10): 53-57. DOI: 10.3969/j.issn.1003-0999.2017.10.009.
    [8]
    孔魁, 周晓亮, 程明哲. 风电叶片建模及结构分析与测试 [J]. 机电工程技术, 2018, 47(5): 45-48. DOI: 10.3969/j.issn.1009-9492.2018.05.014.

    KONG K, ZHOU X L, CHENG M Z. Structural modeling analysis and testing of wind turbine rotor blade [J]. Mechanical & electrical engineering technology, 2018, 47(5): 45-48. DOI: 10.3969/j.issn.1009-9492.2018.05.014.
    [9]
    Germanischer Lloyd. Guideline for the certification of wind turbines: GL 2010 [S]. Hamburg: Germanischer Lloyd, 2010.
    [10]
    徐立军, 王维庆. 复合材料风电叶片结构强度非线性分析 [J]. 重庆大学学报, 2021, 44(2): 13-24. DOI: 10.11835/j.issn.1000-582X.2020.203.

    XU L J, WANG W Q. Nonlinear analysis of the structural strength of a composite wind turbine blade [J]. Journal of Chongqing University, 2021, 44(2): 13-24. DOI: 10.11835/j.issn.1000-582X.2020.203.
    [11]
    郑玉巧, 张岩, 魏泰. 风力发电机叶片结构设计与动力学 [M]. 武汉: 华中科技大学出版社, 2022: 37.

    ZHENG Y Q, ZHANG Y, WEI T. Structural design and dynamics for wind turbine blades [M]. Wuhan: Huazhong University of Science & Technology Press, 2022: 37.
    [12]
    International Electrotechnical Commission. Wind energy generation systems-part1: design requirements: IEC 61400-1 [S]. Switzerland: International Electrotechnical Commission, 2019.
    [13]
    赵春妮, 刘清, 陈文光, 等. 风电叶片后缘建模方法对屈曲稳定性的影响 [J]. 复合材料科学与工程, 2020(5): 100-104. DOI: 10.3969/j.issn.1003-0999.2020.05.016.

    ZHAO C N, LIU Q, CHEN W G, et al. The effects of wind turbine blade trailing edge modeling way on buckling [J]. Composites science and engineering, 2020(5): 100-104. DOI: 10.3969/j.issn.1003-0999.2020.05.016.
    [14]
    袁巍华, 吴玉国, 王国付, 等. 风电叶片尾缘结构稳定性研究 [J]. 玻璃钢/复合材料, 2018(1): 12-17. DOI: 10.3969/j.issn.1003-0999.2018.01.002.

    YUAN W H, WU Y G, WANG G F, et al. Study on the stability of wind turbine blade trailing edge strcture [J]. Fiber reinforced plastics/composites, 2018(1): 12-17. DOI: 10.3969/j.issn.1003-0999.2018.01.002.
    [15]
    阳雪兵, 沈意平, 李卉. 5 MW风力机叶片结构力学特性有限元分析 [J]. 机械研究与应用, 2018, 31(4): 42-45. DOI: 10.16576/j.cnki.1007-4414.2018.04.014.

    YANG X B, SHEN Y P, LI H. Finite element analysis on structural mechanical characteristics of the 5 MW wind turbine blade [J]. Mechanical research & application, 2018, 31(4): 42-45. DOI: 10.16576/j.cnki.1007-4414.2018.04.014.
    [16]
    熊磊. 大型风力机叶片的疲劳寿命模糊预测方法研究 [D]. 重庆: 重庆大学, 2016.

    XIONG L. Study on the fuzzy fatigue life prediction of large wind turbine blades [D]. Chongqing: Chongqing University, 2016.
    [17]
    骆传龙, 李秀海, 李军向, 等. 风电叶片摆振疲劳损伤分析与补强维修 [J]. 玻璃纤维, 2022(6): 7-11. DOI: 10.13354/j.cnki.cn32-1129/tq.2022.06.007.

    LUO C L, LI X H, LI J X, et al. Edgewise fatigue analysis of wind turbine blade and structural strengthening [J]. Fiber glass, 2022(6): 7-11. DOI: 10.13354/j.cnki.cn32-1129/tq.2022.06.007.
    [18]
    International Electrotechnical Commission. Wind turbines-part 23: full-scale structural testing of rotor blades: IEC 61400-23 [S]. Switzerland: International Electrotechnical Commission, 2014.
    [19]
    陆亮, 吴海军, 乌建中. 全尺寸风机叶片疲劳测试技术与弯矩匹配方法研究进展综述 [J]. 液压与气动, 2020(2): 1-8. DOI: 10.11832/j.issn.1000-4858.2020.02.001.

    LU L, WU H J, WU J Z. Review of fatigue testing technology and bending moment matching method of full-scale wind turbine blades [J]. Chinese hydraulics & pneumatics, 2020(2): 1-8. DOI: 10.11832/j.issn.1000-4858.2020.02.001.
    [20]
    杨海江, 李军向, 李秀海. 风电机组叶片疲劳测试加载系统激振力及能量消耗分析 [J]. 风能, 2020(2): 88-92. DOI: 10.3969/j.issn.1674-9219.2020.02.024.

    YANG H J, LI J X, LI X H. Analysis of excitation force and energy consumption of loading system for wind turbine blade fatigue test [J]. Wind energy, 2020(2): 88-92. DOI: 10.3969/j.issn.1674-9219.2020.02.024.
  • Related Articles

    [1]XIONG Kang, LI Yuan, MA Benben, WANG Lin, YUAN Rong. Research on Vibration Testing of Main Shaft Bearing of Offshore Direct-Drive Wind Turbine Generator System[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2023-308
    [2]XU Xuesong, HUANG Ya, LEI Hong, JIANG Li, ZHANG Jie, WANG Kun. Research on the High Power Magnetic Field Immunity Test System for ITER[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(2): 26-32. DOI: 10.16516/j.gedi.issn2095-8676.2022.02.003
    [3]Lu LI, ✉. Problem of Equivalent Fatigue Static Load for Offshore Wind Turbine Support Structure[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 88-92. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.017
    [4]Hengjun LI, Mindong YANG, ✉, Sha LIU, Dezong ZHOU. Fatigue Testing of Support Structure for Offshore Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(3): 89-94. DOI: 10.16516/j.gedi.issn2095-8676.2020.03.011
    [5]Ming CAI, Huan LIN, Qiyan LIAO, Guangfu MA, Bing CHEN. Research on on-Site Test Method for Flexible HVDC Converter Valve Power Module[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 70-76. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.013
    [6]Hongqing WANG, Xudong LIU, Mingjun BI, Jinchao LIU. Analysis of Influencing Factors on Fatigue of Offshore Wind Turbine Monopile Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 92-97. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.014
    [7]ZHENG Weiwen. Application of Self-balanced Static Load Test in the Transmission Line Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2017, 4(S1): 120-124. DOI: 10.16516/j.gedi.issn2095-8676.2017.S1.023
    [8]LIU Donghua, YUAN Guokai, CHEN Tao, WANG Xian. Review on Fatigue Mechanism of Grouted Connection in Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(S1): 68-72. DOI: 10.16516/j.gedi.issn2095-8676.2016.S1.015
    [9]Jianwei LIANG, Ruibi ZENG. Investigation on Test and Mechanism of Specific Surface Area of Soft Clay[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(4): 102-106,112. DOI: 10.16516/j.gedi.issn2095-8676.2016.04.021
    [10]ZHAO Manyong, WEN An, JIN Xin, WEI Chengzhi, HUANG Weifang. Analysis of PTN Network 1588 Time Synchronization Test and Application in Electric Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 151-154. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.034

Catalog

    SHI Bowen

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (119) PDF downloads (11) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return