Advanced Search
WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40. DOI: 10.16516/j.ceec.2024.6.03
Citation: WANG Zhimin, HUANG Qian, LIU Guanqing, et al. Flexibility-Oriented safety assessment strategy for air preheater in thermal power units adapting to the advanced power system [J]. Southern energy construction, 2024, 11(6): 33-40. DOI: 10.16516/j.ceec.2024.6.03

Flexibility-Oriented Safety Assessment Strategy for Air Preheater in Thermal Power Units Adapting to the Advanced Power System

More Information
  • Received Date: December 17, 2023
  • Revised Date: February 04, 2024
  • Accepted Date: February 29, 2024
  • Available Online: June 19, 2024
  •   Introduction  The realization of "dual carbon" goals in the construction of a new power system necessitates the transformation of existing thermal power plants to accommodate peak load operations. The safety of thermal power units during flexible operation is a critical element for enhancing the overall stability of the power system. Air preheater is the key auxiliary equipment that affects the wide-load operation capacity of thermal power units. This paper addresses the challenges associated with flue gas temperature fluctuations and blockage and corrosion induced by excessive ammonia injection. It is very important to develop a real-time assessment and safety status monitoring model for dust and blockage of rotary air preheaters.
      Method  Based on the big data of wide-load operation monitoring of 600 MW and 350 MW units in central China, the paper developed a model for air preheater blockage assessment based on approximation of the resistance coefficients in the case of various time scales. Furthermore, the flue gas temperature at the outlet of the air preheater and the cold end working temperature were used as monitoring indicators to count the proportion of parameters exceeding the limit in multiple load sections of the unit.
      Result  The results show that, at a peak regulation load of 39%, there is approximately a 20% probability of temperature exceedance. In addition, the independent calculation of the blockage risk based on the two indicators may result in a certain degree of underestimation of its degradation rate compared to the calculation based on a joint distribution. Besides, with the verification of data from the two units, the method can quantify the short-term (within the soot-blowing cycle) and mid-and-long term evolution of the air preheater blockage.
      Conclusion  This assessment strategy applies to other equipment and systems in thermal power plants, such as SCR denitrification systems and coal mills, providing a quantitative assessment of safety risks during peak load operation. It guides thermal power units to efficiently and stably cooperate with the new power system in dispatching.
  • [1]
    王放放, 杨鹏威, 赵光金, 等. 新型电力系统下火电机组灵活性运行技术发展及挑战 [J]. 发电技术, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079.

    WANG F F, YANG P W, ZHAO G J, et al. Development and challenge of flexible operation technology of thermal power units under new power system [J]. Power Generation Technology, 2024, 45(2): 189-198. DOI: 10.12096/j.2096-4528.pgt.23079.
    [2]
    张少强, 陈露, 刘子易, 等. 大型燃煤锅炉深度调峰关键问题探讨 [J]. 南方能源建设, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003.

    ZHANG S Q, CHEN L, LIU Z Y, et al. Discussion on key problems of depth peak adjustment for large coal-fired boilers [J]. Southern energy construction, 2022, 9(3): 16-28. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.003.
    [3]
    张全斌, 周琼芳. 基于“双碳”目标的中国火力发电技术发展路径研究 [J]. 发电技术, 2023, 44(2): 143-154. DOI: 10.12096/j.2096-4528.pgt.22092.

    ZHANG Q B, ZHOU Q F. Research on the Development path of China's thermal power generation technology based on the goal of "carbon peak and carbon neutralization" [J]. Power Generation Technology, 2023, 44(2): 143-154. DOI: 10.12096/j.2096-4528.pgt.22092.
    [4]
    潘尔生, 田雪沁, 徐彤, 等. 火电灵活性改造的现状、关键问题与发展前景 [J]. 电力建设, 2020, 41(9): 58-68. DOI: 10.12204/j.issn.1000-7229.2020.09.007.

    PAN E S, TIAN X Q, XU T, et al. Status, critical problems and prospects of flexibility retrofit of thermal power in China [J]. Electric power construction, 2020, 41(9): 58-68. DOI: 10.12204/j.issn.1000-7229.2020.09.007.
    [5]
    王志敏, 黄骞, 王可轩, 等. 宽负荷下供热机组煤耗实时寻优分析 [J]. 中国电机工程学报, 2023, 43(4): 1347-1358. DOI: 10.13334/j.0258-8013.pcsee.222277.

    WANG Z M, HUANG Q, WANG K X, et al. Real-time optimization analysis of coal consumption of co-generation units under varied loads [J]. Proceedings of the CSEE, 2023, 43(4): 1347-1358. DOI: 10.13334/j.0258-8013.pcsee.222277.
    [6]
    GU Y J, XU J, CHEN D C, et al. Overall review of peak shaving for coal-fired power units in China [J]. Renewable and sustainable energy reviews, 2016, 54: 723-731. DOI: 10.1016/j.rser.2015.10.052.
    [7]
    张志强, 宋国升, 陈崇明, 等. 某电厂600 MW机组SCR脱硝过程氨逃逸原因分析 [J]. 电力建设, 2012, 33(6): 67-70. DOI: 10.3969/j.issn.1000-7229.2012.06.017.

    ZHANG Z Q, SONG G S, CHEN C M, et al. Cause analysis of ammonia escape in SCR flue gas denitrification process for 600 MW units [J]. Electric power construction, 2012, 33(6): 67-70. DOI: 10.3969/j.issn.1000-7229.2012.06.017.
    [8]
    ALOBAID F, MERTENS N, STARKLOFF R, et al. Progress in dynamic simulation of thermal power plants [J]. Progress in energy and combustion science, 2017, 59: 79-162. DOI: 10.1016/j.pecs.2016.11.001.
    [9]
    王春昌, 马剑民, 张宇博, 等. 1 000 MW机组锅炉空气预热器旁路余热利用系统节能效果分析 [J]. 热力发电, 2019, 48(11): 56-61. DOI: 10.19666/j.rlfd.201904144.

    WANG C C, MA J M, ZHANG Y B, et al. Study on energy-saving effect of bypass waste heat utilization system of air preheater in a 1000 MW unit boiler [J]. Thermal power generation, 2019, 48(11): 56-61. DOI: 10.19666/j.rlfd.201904144.
    [10]
    黄风良, 孙志坚, 李鹏程, 等. 带扰流孔波纹板的传热和阻力特性 [J]. 浙江大学学报(工学版), 2015, 49(7): 1242-1248. DOI: 10.3785/j.issn.1008-973X.2015.07.006.

    HUANG F L, SUN Z J, LI P C, et al. Heat transfer and resistance characteristics of corrugated plate with spoiler holes [J]. Journal of Zhejiang University (engineering science), 2015, 49(7): 1242-1248. DOI: 10.3785/j.issn.1008-973X.2015.07.006.
    [11]
    宋晓通. 600 MW燃煤机组空预器堵塞治理对风机运行的影响 [J]. 能源科技, 2023, 21(1): 52-55.

    SONG X T. Effect of air preheater choking control on fan operation of 600 MW coal-fired unit [J]. Energy science and technology, 2023, 21(1): 52-55.
    [12]
    高荣泽, 王利民, 孙浩家, 等. 回转式空气预热器积灰分层监测方法研究 [J]. 动力工程学报, 2023, 43(6): 677-685. DOI: 10.19805/j.cnki.jcspe.2023.06.003.

    GAO R Z, WANG L M, SUN H J, et al. Study on layered fouling monitoring method of rotary air preheater [J]. Journal of Chinese society of power engineering, 2023, 43(6): 677-685. DOI: 10.19805/j.cnki.jcspe.2023.06.003.
    [13]
    张晓安. 锅炉吹灰优化中清洁因子的计算研究 [D]. 保定: 华北电力大学, 2013.

    ZHANG X A. Calculation of clean factor for power station boiler blowing optimization [D]. Baoding: North China Electric Power University, 2013.
    [14]
    王建国, 徐志明, 杨善让. 空气预热器积灰在线监测模型 [J]. 中国电机工程学报, 2000, 20(7): 37-39. DOI: 10.3321/j.issn:0258-8013.2000.07.009.

    WANG J G, XU Z M, YANG S R. On-line monitoring model of ash deposits on air preheater [J]. Proceedings of the CSEE, 2000, 20(7): 37-39. DOI: 10.3321/j.issn:0258-8013.2000.07.009.
    [15]
    SHI Y H, WEN J, CUI F S, et al. An optimization study on soot-blowing of air preheaters in coal-fired power plant boilers [J]. Energies, 2019, 12(5): 958. DOI: 10.3390/en12050958.
    [16]
    李诚. 深度调峰下燃煤机组低碳运行与氮氧化物协同优化脱除 [D]. 北京: 清华大学, 2021.

    LI C. Low-carbon operation and synergistic optimization of nitrogen oxide removal of coal-fired power plants under deep peak regulation [D]. Beijing: Tsinghua University, 2021.
    [17]
    BU Y F, WANG L M, CHEN X, et al. Numerical analysis of ABS deposition and corrosion on a rotary air preheater [J]. Applied thermal engineering, 2018, 131: 669-677. DOI: 10.1016/j.applthermaleng.2017.11.082.
    [18]
    MENASHA J, DUNN-RANKIN D, MUZIO L, et al. Ammonium bisulfate formation temperature in a bench-scale single-channel air preheater [J]. Fuel, 2011, 90(7): 2445-2453. DOI: 10.1016/j.fuel.2011.03.006.
    [19]
    徐民. 超超临界锅炉宽负荷脱硝改造方案对比分析 [J]. 发电设备, 2022, 36(6): 433-436. DOI: 10.19806/j.cnki.fdsb.2022.06.012.

    XU M. Comparison and analysis on wide-load denitration retrofit schemes for an ultra-supercritical boiler [J]. Power equipment, 2022, 36(6): 433-436. DOI: 10.19806/j.cnki.fdsb.2022.06.012.
    [20]
    VAN DER LANS R P, GLARBORG P, DAM-JOHANSEN K. Influence of process parameters on nitrogen oxide formation in pulverized coal burners [J]. Progress in energy and combustion science, 1997, 23(4): 349-377. DOI: 10.1016/S0360-1285(97)00012-9.
    [21]
    SMREKAR J, POTOČNIK P, SENEGAČNIK A. Multi-step-ahead prediction of NO x emissions for a coal-based boiler [J]. Applied energy, 2013, 106: 89-99. DOI: 10.1016/j.apenergy.2012.10.056.
    [22]
    CHENG T, LUO L Y, YANG L J, et al. Formation and emission characteristics of ammonium sulfate aerosols in flue gas downstream of selective catalytic reduction [J]. Energy & fuels, 2019, 33(8): 7861-7868. DOI: 10.1021/acs.energyfuels.9b01436.
    [23]
    张少强, 孙晨阳, 余落杭, 等. 燃煤发电机组灵活性改造的研究进展综述 [J]. 南方能源建设, 2023, 10(2): 48-54. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.007.

    ZHANG S Q, SUN C Y, YU L H, et al. Research progress on flexibility modification of coal-fired generating units [J]. Southern energy construction, 2023, 10(2): 48-54. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.007.
    [24]
    郭宬昊, 谢子硕, 王金星, 等. 新能源系统中双储能耦合燃煤机组的应用策略研究 [J]. 南方能源建设, 2022, 9(3): 62-71. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.007.

    GUO C H, XIE Z S, WANG J X, et al. Research on operation strategy of the application of dual energy storage coupled with coal-fired units in new energy power system [J]. Southern energy construction, 2022, 9(3): 62-71. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.007.
    [25]
    窦文雷, 张娜, 胡旌伟, 等. 寒地新能源与灵活供热煤电改造协同规划模型 [J]. 电力建设, 2024, 45(9): 13-25. DOI: 10.12204/j.issn.1000-7229.2024.09.002.

    DOU W L, ZHANG N, HU J W, et al. Cooperative planning model for renewable energy and flexible coal-fired chp in cold regions [J]. Electric power construction, 2024, 45(9): 13-25. DOI: 10.12204/j.issn.1000-7229.2024.09.002.
  • Related Articles

    [1]ZHANG Ningtao, WANG Rujie, WANG Lidong. Technology Development and Economic Assessment of Direct Air Capture (DAC) in the Context of Carbon Neutrality[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 15-25. DOI: 10.16516/j.ceec.2024.5.02
    [2]LIANG Xi, YU Xiaojie, XIA Changyou, LIU Muxin, GAO Zhihao. Assessment of the Climate Benefits and Economic Feasibility of Carbon Dioxide Utilization Pathways[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 1-14. DOI: 10.16516/j.ceec.2024.5.01
    [3]WANG Chao, CHEN Qi, GU Xinmei, JIANG Hu, GUO Fang, HUANG Guangshan, ZHU Shanshan. Assessment Method for Health State of Li-Ion Batteries Based on Sparrow Search Algorithm[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 89-97. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.010
    [4]ZHANG Xuemeng, MENG Xiangjuan, MAO Fubin, LI Yuliang, CHEN Fan. Impact Assessment of New Energy Characteristics on Regional Power Grid Considering Multiple Time Scales[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 166-173. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.020
    [5]Chujun LUO, Jian LI, Qinghua WU, Shengfeng ZHANG. Risk Assessment Method for Anchoring Accident of High Voltage Submarine Cable[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 67-73. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.010
    [6]Zikai LU, Xianghao JIAN, Minghan ZHANG. Reliability and Economy Assessment of Multi-terminal Flexible DC Distribution Network[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(4): 67-74. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.010
    [7]Xing YANG, Xiaoqiang ZHAN, Hao WANG, Weidong CHEN, Guanghui TANG. Quantitative Risk Assessment of Slope of Neighboring Highway Transmission Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(S1): 135-139. DOI: 10.16516/j.gedi.issn2095-8676.2019.S1.026
    [8]Yunshu DENG, Ruijin LI, Wenhua YE, Lingsen ZENG, Xiaochun LIAO. Design of Wide Area Power Quality Assessment System Based on Recording Data[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 113-119. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.019
    [9]WANG Jun, XI Fang. Variation Characteristics and Assessment of Solar Energy Resources in Wanshan Islands Area[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 193-197. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.043
    [10]Xiaoling ZHAO, Bo LI. Core Damage Assessment for CANDU6 Under Severe Accident Condition[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(4): 37-42. DOI: 10.16516/j.gedi.issn2095-8676.2015.04.005

Catalog

    LI Shuiqing

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1908) PDF downloads (204) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return