Advanced Search
ZHENG Minghui, LIU Ruijing, WANG Xue, ZHAO Han, HU Yun, WANG Xiang. Research Progress of Coupled Waste Heat Utilization Technology for Coal-Fired Power Generating Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 80-87. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.009
Citation: ZHENG Minghui, LIU Ruijing, WANG Xue, ZHAO Han, HU Yun, WANG Xiang. Research Progress of Coupled Waste Heat Utilization Technology for Coal-Fired Power Generating Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 80-87. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.009

Research Progress of Coupled Waste Heat Utilization Technology for Coal-Fired Power Generating Units

More Information
  • Received Date: April 04, 2022
  • Revised Date: April 13, 2022
  • Accepted Date: April 13, 2022
  • Available Online: July 13, 2022
  •   Introduction  To realize the demand of further expanding the thermal power ratio of coal-fired power generating units, coupled waste heat utilization technology combined with the characteristics of the original units has become one of the effective ways. There are great differences in the adaptive characteristics and regulation capacity of the existing waste heat utilization technology.
      Method  Several waste heat recovery and utilization methods were comprehensively reviewed and their principles, advantages and disadvantages were compared. Then the current focus of waste heat recovery technology was further reviewed by introducing common evaluation indicators.
      Result  For waste heat recovery and utilization technology, there are mainly flue gas waste heat recovery, recycling water waste heat recovery, air source waste heat recovery, industrial waste gas recovery, and so on. The temperature ranges are 120~150 ℃, 15~35 ℃, 0~60 ℃, and below 300 ℃, respectively. The evaluation methods of coupled waste heat utilization technology mainly include performance evaluation, economic evaluation, and system parameter correlation evaluation, among which the evaluation parameters such as heat consumption and thermal efficiency are the main ones.
      Conclusion  The development direction and relevant suggestions of waste heat recovery and utilization technology are pointed out. At present, coupled waste heat recovery and utilization technology is mainly used in the heat pump system. Under the demand for a higher thermal power ratio in the future, the low-pressure cylinder transformation technology using cold end waste heat heating will become a major development focus.
  • [1]
    国家电网报. 国家电网公司发布“碳达峰、碳中和”行动方案 [N]. 国家电网报, 2021-03-02 (001).

    State Grid News. State Grid Corporation of China released an action plan on peaking carbon dioxide emissions and carbon neutrality [N]. State Grid News, 2021-03-02 (001).
    [2]
    裴玥瑶, 杜欣慧, 李钢, 等. 考虑需求响应和风电供热的电热联合优化调度 [J]. 太原理工大学学报, 2020, 51(6): 867-873. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.013.

    PEI Y Y, DU X H, LI G, et al. Optimal dispatch of combined heat and power systems considering demand response and wind power heating [J]. Journal of Taiyuan University of Technology, 2020, 51(6): 867-873. DOI: 10.16355/j.cnki.issn1007-9432tyut.2020.06.013.
    [3]
    袁春峰, 刘锴慧, 张帆, 等. 火电机组一次调频技术研究进展综述 [J/OL]. 南方能源建设: 1-9. (2022-02-17) [2022-04-04]. https://www.energychina.press/cn/article/j.gedi.issn2095-8676.2022.03.001.

    YUAN C F, LIU K H, ZHANG F, et al. Review on the research progress of primary frequency modulation technology for thermal power units [J/OL]. Southern Energy Construction: 1-9. (2022-02-17) [2022-04-04]. https://www.energychinapress/cn/article/j.gedi.issn2095-8676.2022.03.001.
    [4]
    方旭, 彭雪风, 张凯, 等. 燃煤热电联产系统冷端余能供热改造研究进展 [J]. 华电技术, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008.

    FANG X, PENG X F, ZHANG K, et al. Development of heating retrofit using waste heat from coal-fired CHP system cold end [J]. Huadian Technology, 2021, 43(3): 48-56. DOI: 10.3969/j.issn.1674-1951.2021.03.008.
    [5]
    王力, 陈永辉, 李波, 等. 300 MW机组高背压供热改造方案及试验分析 [J]. 汽轮机技术, 2018, 60(5): 385-388. DOI: 10.3969/j.issn.1001-5884.2018.05.019.

    WANG L, CHEN Y H, LI B, et al. Reconstruction scheme and test analysis for heating supply with high back pressure of a 300 MW unit [J]. Turbine Technology, 2018, 60(5): 385-388. DOI: 10.3969/j.issn.1001-5884.2018.05.019.
    [6]
    汪可, 田亮. 供热机组低压缸零出力工况下热经济性分析 [J/OL]. 华北电力大学学报(自然科学版): 1-7. (2022-01-13) [2022-04-04]. http://kns.cnki.net/kcms/detail/13.1212.tm.20220112.1724.004.html.

    WANG K, TIAN L. Thermal economy analysis of heating unit under zero-output condition of low pressure cylinder [J/OL]. Journal of North China Electric Power University (Natural Science Edition): 1-7. (2022-01-13) [2022-04-04]. http://kns.cnki.net/kcms/detail/13.1212.tm.20220112.1724.004.html.
    [7]
    WANG J D, ZHOU Z G, ZHAO J N, et al. Improving wind power integration by a novel short-term dispatch model based on free heat storage and exhaust heat recycling [J]. Energy, 2018(160): 940-953. DOI: 10.1016/j.energy.2018.07.018.
    [8]
    陈云峰. 燃煤电厂烟气余热利用节能及环保技术研究 [D]. 北京: 华北电力大学(北京), 2017. DOI: 10.7666/d.Y3263175.

    CHEN Y F. Research on the use of energy-saving and environmental protection technologies for flue gas waste heat in coal-fired power plants [D]. Beijing: North China Electric Power University, 2017. DOI: 10.7666/d.Y3263175.
    [9]
    刘彦. 低温循环水余热回收供暖技术 [J]. 煤炭与化工, 2014, 37(7): 129-131.

    LIU Y. Low-temperature circulating water waste heat recovery heating technology [J]. Coal and Chemical Industry, 2014, 37(7): 129-131.
    [10]
    张翼, 魏书洲, 任学武, 等. 风电-抽凝机组耦合系统供暖方案研究 [J]. 热力发电, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111.

    ZHANG Y, WEI S Z, REN X W, et al. Heat supply schemes for a coupling system of condensing unit and wind power [J]. Thermal Power Generation, 2021, 50(11): 54-60+67. DOI: 10.19666/j.rlfd.202106111.
    [11]
    连红奎, 李艳, 束光阳子, 等. 我国工业余热回收利用技术综述 [J]. 节能技术, 2011, 29(2): 123-128. DOI: 10.3969/j.issn.1002-6339.2011.02.006.

    LIAN H K, LI Y, SHU G Y Z, et al. An overview of domestic technologies for waste heat utilization [J]. Energy Conservation Technology, 2011, 29(2): 123-128. DOI: 10.3969/j.issn.1002-6339.2011.02.006.
    [12]
    张群力, 张秋月, 曹明凯, 等. 燃气锅炉烟气余热回收利用技术研究 [J]. 建筑科学, 2016, 32(6): 133-141. DOI: 10.13614/j.cnki.11-1962/tu.2016.06.22.

    ZHANG Q L, ZHANG Q Y, CAO M K, et al. Research on technologies for the recovery of the flue gas waste heat in gas boilers [J]. Building Science, 2016, 32(6): 133-141. DOI: 10.13614/j.cnki.11-1962/tu.2016.06.22.
    [13]
    高智溥, 万逵芳, 刘岩, 等. 耦合弃风和循环水余热的供热系统 [J]. 分布式能源, 2017, 2(3): 1-7. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.001.

    GAO Z P, WAN K F, LIU Y, et al. Heat supply system coupling wind curtailment with waste energy in cooling water [J]. Distributed Energy, 2017, 2(3): 1-7. DOI: 10.16513/j.cnki.10-1427/tk.2017.03.001.
    [14]
    原宇豪. 浅谈几种余热回收系统及其应用 [J]. 能源与节能, 2019(12): 53-55+58. DOI: 10.16643/j.cnki.14-1360/td.2019.12.023.

    YUAN Y H. Discussion on several waste heat recovery systems and the application [J]. Energy and Conservation, 2019(12): 53-55+58. DOI: 10.16643/j.cnki.14-1360/td.2019.12.023.
    [15]
    李彦峰, 马晓菲. 供热系统烟气余热及循环水余热回收方案设计 [J]. 应用能源技术, 2015(7): 16-20. DOI: 10.3969/j.issn.1009-3230.2015.07.005.

    LI Y F, MA X F. Scheme design of heat recovery of flue gas waste heat and circulating water in heating system [J]. Applied Energy Technology, 2015(7): 16-20. DOI: 10.3969/j.issn.1009-3230.2015.07.005.
    [16]
    张诗宜. 烟气净化及余热回收系统优化与评价研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018. DOI: 10.27061/d.cnki.ghgdu.2018.000657.

    ZHANG S Y. Study on optimization and evaluation of flue gas purification and waste heat recovery system [D]. Harbin: Harbin Institute of Technology, 2018. DOI: 10.27061/d.cnki.ghgdu.2018.000657.
    [17]
    刘永林, 屈杰, 周科, 等. 烟气余热回收利用系统节能效果试验研究 [J]. 热能动力工程, 2017, 32(4): 76-79. DOI: 10.16146/j.cnki.rndlgc.2017.04.011.

    LIU Y L, QU J, ZHOU K, et al. Experimental study on the energy-saving of flue gas waste heat utilization systems [J]. Journal of Engineering for Thermal Energy and Power. 2017, 32(4): 76-79. DOI: 10.16146/j.cnki.rndlgc. 2017.04.011.
    [18]
    刘哲毅. 燃煤烟气余热回收用于集中供热的系统分析 [D]. 大连: 大连理工大学, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003032.

    LIU Z Y. System analysis of coal-fired flue gas waste heat recovery for central heating [D]. Dalian: Dalian University of Technology, 2019. DOI: 10.26991/d.cnki.gdllu.2019.003032.
    [19]
    徐承美, 谢英柏, 弓学敏. 燃煤锅炉烟气余热利用途径分析 [J]. 热能动力工程, 2020, 35(8): 151-157. DOI: 10.16146/j.cnki.rndlgc.2020.08.020.

    XU C M, XIE Y B, GONG X M. Analysis on utilization of waste heat from flue gas of coal-fired boiler [J]. Thermal Power Engineering, 2020, 35(8): 151-157. DOI: 10.16146/j.cnki.rndlgc.2020.08.020.
    [20]
    侯岩, 高杰, 任向东, 等. 烟气余热回收中节能设备的应用 [J]. 石油和化工设备, 2021, 248(1): 96-98. DOI: 10.3969/j.issn.1674-8980.2021.01.028.

    HOU Y, GAO J, REN X D, et al. Application of energy saving equipment in flue gas waste heat recovery [J]. Petroleum and Chemical Equipment, 2021, 248(1): 96-98. DOI: 10.3969/j.issn.1674-8980.2021.01.028.
    [21]
    李美军. 燃煤工业锅炉余热利用技术及原则概述 [J]. 工业炉, 2021, 43(1): 6-10+16. DOI: 10.3969/j.issn.1001-6988.2021.01.002.

    LI M J. Overview of waste heat utilization technology and principles of coal-fired industrial boilers [J]. Industrial Boilers, 2021, 43(1): 6-10+16. DOI: 10.3969/j.issn.1001-6988.2021.01.002.
    [22]
    王铁民, 郭朋. 钢铁企业余热利用优化运行实践与探索 [J]. 冶金动力, 2019(12): 6-9. DOI: 10.13589/j.cnki.yjdl.2019.12.003.

    WANG T M, GUO P. Practice and exploration of optimizing operation of waste heat utilization in steel enterprises [J]. Metallurgical Power, 2019(12): 6-9. DOI: 10.13589/j.cnki.yjdl.2019.12.003.
    [23]
    甄浩然, 冯文亮, 王帅. 热水储热技术在烟气余热回收中的应用效果分析 [J]. 区域供热, 2020(5): 150-153+158. DOI: 10.16641/j.cnki.cn11-3241/tk.2020.05.023.

    ZHEN H R, FENG W L, WANG S. Analysis of application effect of hot water storage technology in flue gas waste heat recovery [J]. District Heating, 2020(5): 150-153+158. DOI: 10.16641/j.cnki.cn11-3241/tk.2020.05.023.
    [24]
    OUYANG T C, WANG Z P, ZHAO Z K, et al. An advanced marine engine waste heat utilization scheme: electricity-cooling cogeneration system integrated with heat storage device [J]. Energy Conversion and Management, 2021(235): 113955. DOI: 10.1016/j.enconman.2021.113955.
    [25]
    郭璞维, 彭跃, 邓靖敏, 等. 烟气余热回收与储能技术耦合应用的可行性研究 [J]. 华电技术, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008.

    GUO P W, PENG Y, DENG J M, et al. Feasibility study on the coupling application of flue gas waste heat recovery and energy storage technology [J]. Huadian Technology, 2021, 43(9): 62-68. DOI: 10.3969/j.issn.1674-1951.2021.09.008.
    [26]
    刘媛媛, 隋军, 刘浩. 燃煤热电厂串并联耦合吸收式热泵供热系统研究 [J]. 中国电机工程学报, 2016, 36(22): 6148-6155. DOI: 10.13334/j.0258-8013.pcsee.160674.

    LIU Y Y, SUI J, LIU H. Research on heating system of serial-parallel coupling absorption heat pump for coal fired power plants [J]. Proceedings of the CSEE, 2016, 36(22): 6148-6155. DOI: 10.13334/j.0258-8013.pcsee.160674.
    [27]
    刘海云, 李海英, 姬爱民. 煤矿多源耦合热泵进行余热回收方案的研究 [J]. 节能, 2015, 34(1): 26-29+2. DOI: 10.3969/j.issn.1004-7948.2015.01.006.

    LIU H Y, LI H Y, JI A M. Research on the multi coupled heat pump system in coal mine [J]. Energy Conservation, 2015, 34(1): 26-29+2. DOI: 10.3969/j.issn.1004-7948.2015.01.006.
    [28]
    杨灿, 谢辉, 周奎, 等. 柴油机有机朗肯循环余热回收系统的耦合效应 [J]. 内燃机学报, 2017, 35(5): 452-459. DOI: 10.16236/j.cnki.nrjxb.201705063.

    YANG C, XIE H, ZHOU K, et al. Coupling effects between a diesel engine and a subordinate ORC exhaust heat recovery system [J]. Transacyions of Csice, 2017, 35(5): 452-459. DOI: 10.16236/j.cnki.nrjxb.201705063.
    [29]
    LIANG Y C, SHU G Q, TIAN H, et al. Investigation of a cascade waste heat recovery system based on coupling of steam Rankine cycle and NH3-H2O absorption refrigeration cycle [J]. Energy Conversion and Management, 2018(166): 697-703. DOI: 10.1016/j.enconman.2018.04.064.
    [30]
    TIMOTHY J. Waste heat recovery potential of advanced internal combustion engine technologies [J]. Journal of Energy Resources Technology, 2015, 137(4): 042004. DOI: 10.1115/1.4030108.
    [31]
    齐震, 陈衡, 徐钢, 等. 二次再热机组烟气余热利用热力学分析及优化 [J]. 电力科技与环保, 2019, 35(2): 1-7. DOI: 10.3969/j.issn.1674-8069.2019.02.001.

    QI Z, CHEN H, XU G, et al. Thermodynamic analysis and optimization of flue gas waste heat utilization of secondary reheating unit [J]. Electric Power Environmental Protection, 2019, 35(2): 1-7. DOI: 10.3969/j.issn.1674-8069.2019.02.001.
    [32]
    MOLDGY A, PARAMESHWARAN R. Study on thermal energy storage properties of organic phase change material for waste heat recovery applications [J]. Materials Today: Proceedings, 2018, 5(8): 16840-16848. DOI: 10.1016/j.matpr.2018.05.137.
    [33]
    王军御, 刘汉涛, 梁骁聪. 基于离子液体的烟气余热回收存储系统研究 [J]. 机械设计与制造工程, 2021, 50(4): 97-100. DOI: 10.3969/j.issn.2095-509X.2021.04.021.

    WANG J Y, LIU H T, LIANG X C. Research on waste heat recovery and storage system of flue gas based on ionic liquid [J]. Machine Design and Manufacturing Engineering, 2021, 50(4): 97-100. DOI: 10.3969/j.issn.2095-509X.2021.04.021.
    [34]
    吴彦丽, 陈赞林, 赵子萱, 等. CO2热泵耦合燃气锅炉供暖系统研究 [J]. 热力发电, 2021, 50(5): 133-138. DOI: 10.19666/j.rlfd.202008242.

    WU Y L, CHEN Z L, ZHAO Z X, et al. Research on CO2 heat pump coupled gas boiler heating system [J]. Thermal power generation, 2021, 50(5): 133-138. DOI: 10.19666/j.rlfd.202008242.
    [35]
    刘永. 600 MW超临界机组抽汽供热改造在工业供热中的应用分析 [D]. 徐州: 中国矿业大学, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001425.

    LIU Y. Analysis of the application of 600MW supercritical unit in industrial heat supply [D]. Xuzhou: China University of Mining and Technology, 2021. DOI: 10.27623/d.cnki.gzkyu.2021.001425.
  • Related Articles

    [1]ZHOU Tao, ZHANG Haolei, YAO Yao, LIU Chunmei. Development Trend of Information Technology and AdvancedNuclear Power Generation[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-297
    [2]ZHANG Ningtao, WANG Rujie, WANG Lidong. Technology Development and Economic Assessment of Direct Air Capture (DAC) in the Context of Carbon Neutrality[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 15-25. DOI: 10.16516/j.ceec.2024.5.02
    [3]WU Dongqi, GAN Junwen, YU Xinmei, GUO Jingtao, LIAO Yi. Empirical Research on the Evolution of Relationship Between Energy and Economic Development in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 189-197. DOI: 10.16516/j.ceec.2024.2.19
    [4]YANG Jie, ZHANG Jianhua, MA Zhaorong, LIU Donghua, WANG Hongqing, YIN Ziwei. Development Trend and Technical Challenges of the Integration of Offshore Wind Turbine with Marine Ranch[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 1-16. DOI: 10.16516/j.ceec.2024.2.01
    [5]FENG Guoping, LI Juan, XIE Wenyan, JI Xiaoheng, GU Mingsheng, HUANG Xiang. Evaluation of Digital Power Grid Development Index Based on Fuzzy Theory[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 1-9. DOI: 10.16516/j.gedi.issn2095-8676.2023.S1.001
    [6]ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008
    [7]XU Weixuan. Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 88-93. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.010
    [8]Ying PAN. Energy Power Development Direction and Low Carbon Emission Under Energy Strategy[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(3): 32-39. DOI: 10.16516/j.gedi.issn2095-8676.2019.03.006
    [9]HUANG Yu. Inspiration and Situation of Domestic and International Development of Electric Power Direct Exchange[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 1-4. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.001
    [10]Lan CHEN, Xi LIANG, Di ZHOU. Potential Economic Opportunities of Developing a CCUS Industry in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2014, 1(1): 7-15. DOI: 10.16516/j.gedi.issn2095-8676.2014.01.002
  • Cited by

    Periodical cited type(4)

    1. 郭柏君. 双碳视域下热电厂锅炉烟气余热再利用优化设计研究. 石化技术. 2025(02): 46-48 .
    2. 刘姝祺. 聚合物注入站注聚单耗影响因素分析及节能措施研究. 石油石化节能与计量. 2024(02): 18-22 .
    3. 王华霆,陈衡,徐钢,安吉振. 煤电升级改造背景下烟气余热利用节能效益对比评估. 发电技术. 2024(01): 90-98 .
    4. 宋涛涛,槐鲜妮,程思勇,王兴华,张琦,倪丰平,向煜琪. 压缩空气余热利用及减排效果研究. 油气田地面工程. 2023(06): 79-83 .

    Other cited types(0)

Catalog

    Corresponding author: WANG Xiang, wangxiang_1113@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (981) PDF downloads (99) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return