• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue 2
Mar.  2023
Turn off MathJax
Article Contents

ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2023.02.008
Citation: ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2023.02.008

Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2023.02.008
  • Received Date: 2022-07-07
  • Rev Recd Date: 2022-11-08
  • Available Online: 2023-03-13
  • Publish Date: 2023-03-25
  •   Introduction  In recent years, natural gas power generation has played an important role in the construction of clean energy system of China. By the end of the "14th Five-year Plan" in 2025, China's gas power installed capacity is expected to hit 150 million kilowatts. Carbon capture, utilization and storage (CCUS) is one of the key paths for gas power to achieve the carbon peaking and carbon neutrality goals.   Method  To this end, an integrated plant combining 600 MW natural gas combined cycle (NGCC) and CO2 post-combustion capture (PCC) were set up as the simulation object.   Result  The simulation study shows that the design captures all CO2 flue gas with 90% efficiency, the CO2 compression and purification rate is 99.5%, the total output of gas power generation decreases by about 16.05%, the auxiliary power ratio increases by 5.55%, and the demand for circulating cooling water increases by about 50.52%.   Conclusion  The economic analysis shows that the static investment cost of the integrated plant is 54.28% higher than that of the single power plant, and the levelized cost of energy (LCOE) increases by 15.96%, which brings great difficulties to the deployment and development of carbon dioxide capture. However, the natural gas price is still the most important factor affecting the operating cost of the power plant.
  • [1] 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要: 第十一篇[EB/OL]. (2021-03-13)[2022-07-07]. https://www.ccdi.gov.cn/toutiao/202103/t20210313_237793_m.html.

    Chapter 11 of the 14th five-year plan for national economic and social development of the people's republic of China and the outline of the vision for 2035[EB/OL]. (2021-03-13)[2022-07-07]. https://www.ccdi.gov.cn/toutiao/202103/t20210313_237793_m.html.
    [2] 正略咨询.天然气行业2020年度蓝皮书-未来展望篇[EB/OL]. (2021-03-09)[2022-07-07]. https://page.om.qq.com/page/OOrXE6W0H8S0MOXEAd1cjNUQ0.

    Adfaith. Natural gas industry 2020 blue book-future outlook[EB/OL]. (2021-03-09)[2022-07-07]. https://page.om.qq.com/page/OOrXE6W0H8S0MOXEAd1cjNUQ0.
    [3] 全球碳捕集与封存研究院. 全球碳捕集与封存现状2020报告[R/OL]. (2021-01-27)[2022-07-07]. https://news.bjx.com.cn/html/20210127/1132755.shtml.

    Global Carbon Capture and Storage Institute. Global status report on carbon capture and storage[R/OL]. (2021-01-27)[2022-07-07]. https://news.bjx.com.cn/html/20210127/1132755.shtml.
    [4] 李天枭, 洪涛. 典型机构典型情景下的能源与碳达峰[EB/OL]. (2021-07-29)[2022-07-07]. https://max.book118.com/html/2021/0728/7150004154003151.shtm.

    LI T X, HONG T. Energy and carbon peaks in typical institutions under typical scenarios[EB/OL]. (2021-07-29)[2022-07-07]. https://max.book118.com/html/2021/0728/7150004154003151.shtm.
    [5] YSTAD P A M, BOLLAND O, HILLESTAD M. NGCC and hard-coal power plant with CO2 capture based on absorption [J]. Energy Procedia, 2012, 23: 33-44. DOI:  10.1016/j.egypro.2012.06.019.
    [6] Aspen Technology. Rate-base model of the CO2 capture process by MEA using aspen plus [R]. MA USA: Cambridge, 2009.
    [7] 张克舫, 刘中良, 王远亚, 等. 化学吸收法CO2捕集解吸能耗的分析计算 [J]. 化工进展, 2013, 32(12): 3008-3014. DOI:  10.3969/j.issn.1000-6613.2013.12.037.

    ZHANG K F, LIU Z L, WANG Y Y, et al. Analysis and calculation of the desorption energy consumption of CO2 capture process by chemical absorption method [J]. Chemical Industry and Engineering Progress, 2013, 32(12): 3008-3014. DOI:  10.3969/j.issn.1000-6613.2013.12.037.
    [8] 李晗, 陈健. 单乙醇胺吸收CO2的热力学模型和过程模拟 [J]. 化工学报, 2014, 65(1): 47-54. DOI:  10.3969/j.issn.0438-1157.2014.01.006.

    LI H, CHEN J. Thermodynamic modeling and process simulation for CO2 absorption into aqueous monoethanolamine solution [J]. CIESC Journal, 2014, 65(1): 47-54. DOI:  10.3969/j.issn.0438-1157.2014.01.006.
    [9] 郑碏, 董立户, 陈健, 等. CO2捕集的吸收溶解度计算和过程模拟 [J]. 化工学报, 2010, 61(7): 1740-1746.

    ZHENG Q, DONG L H, CHEN J, et al. Absorption solubility calculation and process simulation for CO2 capture [J]. CIESC Journal, 2010, 61(7): 1740-1746.
    [10] METZ B, DAVIDSON O, CONINCK H D, et al. IPCC special report on carbon dioxide capture and storage [M]. Cambridge, United Kingdom: Cambridge University Press, 2005.
    [11] ROYCE N B. Compressor: selection and sizing (3rd ed.) [M]. Houston, Texas: Gulf Publishing Company, 2005.
    [12] LI H L, DITARANTO M, BERSTAD D. Technologies for increasing CO2 concentration in exhaust gas from natural gas-fired power production with post-combustion, amine-based CO2 capture [J]. Energy, 2011, 36(2): 1124-1133. DOI:  10.1016/j.energy.2010.11.037.
    [13] ZHANG R, ZHANG X W, YANG Q, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC) [J]. Applied Energy, 2017, 205: 1002-1011. DOI:  10.1016/j.apenergy.2017.08.130.
    [14] HETLAND J, KVAMSDAL H M, HAUGEN G, et al. Integrating a full carbon capture scheme onto a 450 MW NGCC electric power generation hub for offshore operations: presenting the Sevan GTW concept [J]. Applied Energy, 2009, 86(11): 2298-2307. DOI:  10.1016/j.apenergy.2009.03.019.
    [15] LAWAL A, WANG M H, STEPHENSON P, et al. Demonstrating full-scale post-combustion CO2 capture for coal-fired power plants through dynamic modelling and simulation [J]. Fuel, 2012, 101: 115-128. DOI: 10.1016/j.2010.10.056fuel.
    [16] BERSTAD D, ARASTO A, JORDAL K, et al. Parametric study and benchmarking of NGCC, coal and biomass power cycles integrated with MEA-based post-combustion CO2 capture [J]. Energy Procedia, 2011, 4: 1737-1744. DOI:  10.1016/j.egypro.2011.02.048.
    [17] PEETERS A N M, FAAIJ A P C, TURKENBURG W C. Techno-economic analysis of natural gas combined cycles with post-combustion CO2 absorption, including a detailed evaluation of the development potential [J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 396-417. DOI:  10.1016/s1750-5836(07)00068-0.
    [18] RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil fuel power plants with CO2 capture and storage [J]. Energy Policy, 2007, 35(9): 4444-4454. DOI:  10.1016/j.enpol.2007.03.009.
    [19] 丁苏. 燃气电厂碳捕获系统集成研究及经济性评估[D]. 广州: 华南理工大学, 2019. DOI:10.27151/d.cnki. ghnlu.2019.001738.

    DING S. Integrated research and economic evaluation of carbon capture system in gas power plant[D]. Guangzhou: South China University of Technology, 2019. DOI:10.27151/d.cnki. ghnlu.2019.001738.
    [20] 王明明. 燃气电厂烟气CO2捕获过程模拟[D]. 北京: 华北电力大学, 2015. DOI: 10.7666/d.D759365.

    WANG M M. Simulation of flue gas CO2 capture form natural gas-fired power plan[D]. Beijing: North China Electric Power University, 2015. DOI: 10.7666/d.D759365.
    [21] 黄斌, 许世森, 郜时旺, 等. 燃煤电厂CO2捕集系统的技术与经济分析 [J]. 动力工程, 2009, 29(9): 864-867+874. DOI:  10.3321/j.issn:1000-6761.2009.09.014.

    HUANG B, XU S S, GAO S W, et al. Technical and economic analysis of CO2 capture system in coal-fired power plant [J]. Journal of Power Engineering, 2009, 29(9): 864-867+874. DOI:  10.3321/j.issn:1000-6761.2009.09.014.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(3)  / Tables(8)

Article Metrics

Article views(303) PDF downloads(66) Cited by()

Related

Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2023.02.008

Abstract:   Introduction  In recent years, natural gas power generation has played an important role in the construction of clean energy system of China. By the end of the "14th Five-year Plan" in 2025, China's gas power installed capacity is expected to hit 150 million kilowatts. Carbon capture, utilization and storage (CCUS) is one of the key paths for gas power to achieve the carbon peaking and carbon neutrality goals.   Method  To this end, an integrated plant combining 600 MW natural gas combined cycle (NGCC) and CO2 post-combustion capture (PCC) were set up as the simulation object.   Result  The simulation study shows that the design captures all CO2 flue gas with 90% efficiency, the CO2 compression and purification rate is 99.5%, the total output of gas power generation decreases by about 16.05%, the auxiliary power ratio increases by 5.55%, and the demand for circulating cooling water increases by about 50.52%.   Conclusion  The economic analysis shows that the static investment cost of the integrated plant is 54.28% higher than that of the single power plant, and the levelized cost of energy (LCOE) increases by 15.96%, which brings great difficulties to the deployment and development of carbon dioxide capture. However, the natural gas price is still the most important factor affecting the operating cost of the power plant.

ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2023.02.008
Citation: ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. doi: 10.16516/j.gedi.issn2095-8676.2023.02.008
  • 从“十五”规划开始,我国利用天然气战略发生了较大调整,“十五”规划纲要确定:加快天然气勘察、开发和利用、统筹生产基地、输送管线和用气工程建设引用国外天然气、提高天然气消费比重。随着我国天然气产业的持续发展和资源环境约束的日益加剧,我国气电逐步发展壮大,至2019年底,我国气电装机容量已突破90 GW。预计到2025年“十四五”末会突破150 GW[1]。这是因为天然气联合循环(NGCC)电厂的排放量约为最先进的燃煤电厂的一半,但即使所有的煤炭消耗都被天然气取代,这一削减也仍将不足以达到我国的减排目标[2]

    碳捕集与封存利用(CCUS)已被国际能源机构(IEA)确定为一项可用于实现减排目标的关键技术(IEA,2010年),是实现能源低碳化应用的唯一途径[3-4]。目前,国内尚未有燃气电厂CCUS项目示范,模拟和仿真成为研究气电CCUS集成挑战的最有用工具。

    • 在这项工作中,主要设想有:(1)使用经过验证的、大小合理的工程实物模型,对一个集成的NGCC、CO2捕集和压缩装置(PCC)的综合工厂进行评估;(2)通过按系统流程的方法建造工厂产生的投资和运行成本估算,对其综合工厂进行经济分析。NGCC工厂输入设计数据,即机组设计数据参如表1所示,机组主要技术指标如表2所示,排烟参数如表3所示。

      项目数据
      环境温度/℃ 28.2
      大气压力/kPa(a) 100.4
      相对湿度/% 85
      电网频率/Hz 50
      燃气轮机负荷/% 100
      燃料类型 天然气
      燃料耗量/(t·h−1) 81.65
      燃料入口温度/℃ 25
      燃料低位热值,LHV 20℃/(MJ·Nm−3) 36.28
      燃气轮机排气温度/℃ 638
      燃气轮机排气流量/(t·h−1) 3 428
      NOx排放量,在15%O2时/(mg·Nm−3) ≤50
      燃气轮机输出功率/MW 453.754
      烟囱排烟温度/℃ 86
      主蒸汽压力/MPa(a) 16.64
      主蒸汽温度/℃ 600
      主蒸汽流量/(t·h−1) 473.8
      再热蒸汽压力(进口/出口)/MPa(a) 3.408/3.759
      再热蒸汽温度(进口/出口)/℃ 600/375
      再热蒸汽流量(进口/出口)/(t·h−1) 497.5/457.2
      低压蒸汽压力/MPa(a) 0.331
      低压蒸汽温度/℃ 264
      低压蒸汽流量/(t·h−1) 67.48
      凝汽器蒸汽流量/(t·h−1) 580.6
      凝汽器压力/kPa(a) 8.8
      蒸汽轮机轴端输出功率/MW 228.687

      Table 1.  Design data of unit

      项目数据
      单台机组总发电功率/MW682.441
      机组的年发电利用小时数/h3 500
      单台机组的小时耗气量/(104 Nm3·h−1)11.14
      单台机组的年耗气量/(108 Nm3·h−1)4.45
      计算毛发电气耗率/[Nm3·(kWh)−1]0.163
      单台机组年毛发电量/(108 kWh)27.3
      毛发电热耗/[kJ·(kWh)−1]5 919
      毛发电效率/%60.82
      注:1)保证工况:环境条件为28.2 ℃、100.4 kPa(a)、85%相对湿度;  2)参考机型暂按Ansaldo GT36机型。

      Table 2.  Technical indexes of unit (single unit)

      序号项目数据
      1 烟囱排烟温度/℃ 86
      2 烟气量/(Nm3·h−1) 2 714 286
      烟气量/ (m3·h−1) 3 552 853
      3 烟气成分(Vol%)
      O2/% 10.92
      N2/% 72.62
      CO2/% 4.452
      SO2/% 0
      H2O/% 11.14

      Table 3.  Flue exhaust parameters

    • NGCC电厂机岛主要系统有:进气系统、排气系统、天然气系统、油系统、盘车系统、发电机本体及氢油水系统、汽机轴封系统及本体疏水系统等。Ansaldo GT36有别于其他机型设有OTC系统,该系统利用锅炉侧的水冷压气机抽出来的空气,冷却后的空气进入透平叶片,产生的高压蒸汽进入汽水侧做功。该系统实现了能量的梯级利用,进一步提高了联合循环机组的出力及效率。NGCC电厂由安萨尔多Ansaldo GT36燃气轮机和一个带再热的三压级蒸汽循环组成,并带OTC系统。模型对象的输入和设计数据如表1所示。该模型对象结合燃气轮机性能和设计系统能达到的性能参数如表2所示。

    • 建立以MEA溶液为基础溶剂的PCC装置模型[5]

      胺化学吸收法碳捕集过程是一个典型的化学过程,可利用化工模拟软件Aspen-Plus进行模拟分析[6],这个模型是由双膜理论支撑的,该理论描述了组分在极小厚度的气膜和液膜上的扩散,并在膜之间的界面上存在相平衡。化学反应也被考虑,并假定在液膜中发生。

      根据理论分析,有机乙醇胺溶液MEA与CO2反应生成比较稳定的氨基甲酸盐,在再生过程中需要较多的能量才能分解,导致再生能耗较大[7-8]。同时氨基甲酸盐对设备的腐蚀性较强,又易形成水垢。MEA与CO2的反应式如下:

      $$ {\rm{CO}}_{2}+{\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{NH}}_{2}={\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{HNCOO}}^-+{\rm{H}}^+$$ (1)
      $$ {\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{HNCOO}}^- + {\rm{H}}_{2}{\rm{O}} = {\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{NH}}_{2} + {\rm{HCO}}_{3}^-$$ (2)
      $$ {\rm{H}}^++{\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{NH}}_{2}={\rm{HOCH}}_{2}{\rm{CH}}_{2}{\rm{NH}}_{3}^+ $$ (3)

      因为MEA与CO2反应生成比较稳定的氨基甲酸盐,反应(2)比反应(1)要快得多,反应式可以写为:

      $$ \begin{split} {\rm{CO}}_{2}+2{\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{NH}}_{2}+{\rm{H}}_{2}{\rm{O}}=&{\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{HNCOO}}^-+\\&{\rm{HO}}({\rm{CH}}_{2})_{2}{\rm{NH}}_{3}^+ \end{split} $$ (4)

      由式(4)可知,MEA吸收CO2的最大容量为0.5(CO2与胺摩尔比)[9]

      电解质相互作用如水解离、碳酸氢盐解离和MEA水解也在液膜中起作用。

      PCC装置工艺设计参数、计算模型对象参数和主要设备参数如表4所示。

      项目参数数据
      吸收塔烟气量/(kg·h−1)3 678 120
      入塔烟气CO2含量(Vol)/%4.452
      出塔烟气CO2含量(Vol)/%0.445 2
      吸收塔个数/个2
      操作温度/℃40
      操作压力/atm1
      填料/波纹填料Mellapak 250Y
      吸收液-30%MEA溶液/(t·h−1)4 504
      单个塔径/m18.30
      填料层高/m18
      压降/[mmH2O·(m填料)−1]20
      湿润率/[m3·(m·h)−1]0.043 6
      入塔MEA液CO2含量/(molCO2·molMEA−1)0.233
      出塔MEA液CO2含量/(molCO2·molMEA−1)0.485
      捕集效率等级(wt)/%90
      解析塔解析塔个数/个1
      操作温度/℃120
      操作压力/atm1
      填料/波纹填料Mellapak 250Y
      蒸汽量/(kg·h−1)344 360
      塔径/m9.4
      填料层高/m12
      压降/(mmH2O·m填料−1)18
      再生所需能量/(kJ·h−1)8.368×108
      解析率/%81.0

      Table 4.  Design and operation parameters of PCC plant

    • 压缩系统由离心式压缩机、后冷却器和洗涤器组成。CO2压缩装置的尺寸和建模,以适当地考虑压缩捕集的CO2所需的能量需求。参考日本KEPCO/MHI应用程序(IPCC,2005)规定,最终压缩阶段排放压力为110 bar,其中CO2为超临界或致密相,用于高效管道输送。纯CO2在96 bar的压力下变为超临界,并且在所有温度下都保持超临界状态(IPCC,2005)[10],然而更高的110 bar的压力允许存在杂质。在模型中加入分子筛以去除水分,确保最终CO2浓度为99.5%。随着越来越多的CO2被储存在地下,随着储层压力的增加,泵能够将CO2压力提高到175 bar[11]。压缩装置设计和运行数据如表5所示。

      项目名称参数
      压缩机的型式离心式
      数量3
      进口压力/MPa(g)0.03
      出口压力/MPa(g)8~11
      单机进气量/(Nm3·h−1)26 745
      进气温度/℃40
      排气温度/℃40~125
      压缩机效率范围/%78~83
      后冷器出口温度/℃40
      压缩机转速/(r·min-16 000
      总功率/kW13 693

      Table 5.  Design and operation parameters of compression plant

    • 考虑主要有4项流程集成点(图1)。

      Figure 1.  Process flow chart of NGCC+PCC integrated plant

      1) 进入PCC装置的废气。

      2) 从NGCC装置抽取到PCC装置再沸器的蒸汽。

      3) 从再沸器返回到NGCC装置的冷凝液。

      4) 从再生器捕集的CO2进入CO2压缩装置。

      废气在进入PCC吸收器之前进行预处理。通过脱硫除尘装置去除SOx气体,通过静电沉淀装置去除NOx气体。利用缓释剂和抗氧化剂来限制MEA的溶剂降解。然后,采用直接接触冷却器(DCC)将气体冷却到40 ℃左右,以便在吸收器中获得有利的吸收条件,并将水从气体中冷凝出来。

      蒸汽通过节流阀从中压涡轮和低压涡轮的交叉处获得,从而限制压力损失,然后用于PCC工厂的溶剂再生。再沸器的冷凝液回送到NGCC装置的冷凝器。选择蒸汽压力3.5 bar,温度160 ℃,选择这个参数是假设1个合理的压降和蒸汽凝结在3 bar、饱和温度134 ℃,在这个温度下,在再沸器中可以保持1个适当的最小尺寸,其中溶剂温度被限制在最大120~125 ℃,以避免热降解。1个减温器是用来控制蒸汽抽出的温度,喷射冷凝水,以确保温度保持刚刚超过饱和。在本研究中,我们假设低压涡轮能够处理大流量变化,而效率下降可以忽略不计[12-13]

      CO2在解析器1.0 bar的压力下被捕集,并被送到压缩装置,在那里它被压缩到超临界状态。超临界二氧化碳被送到附近的含盐含水层进行隔离。因此,从朗肯循环中提取的蒸汽,以及气体鼓风机、溶剂泵和二氧化碳压缩机的功率需求,都构成了NGCC电厂额外的负荷。综合的一体化装置的工艺流程和性能如图1表6所示。

      项目NGCCNGCC+PCC
      电厂净出力/MW682.441572.916
      CO2捕集和压缩PCC的功率损耗/%16.05
      厂用电率/%1.957.5
      总冷却水需水量/(t·h−1)27 65041 618
      冷却水增加/%50.52
      燃气轮机净出力/MW453.754453.754
      排气流量/(kg·h−1)3 678 1203 678 120
      废气CO2含量/V%4.4524.452
      排气出口温度/℃86125
      蒸汽生成/(kg·s−1)161.28165.62
      抽汽流量/(kg·s−1)111.322
      吸收器数量2
      吸收器L/G比1.42
      总溶剂循环速率/(kg·s−1)1 251
      蒸汽/CO2/(kJ·kg−1)3 916
      额外的PCC工厂/MW16.15
      压缩装置进气率/(kg·s−1)59.34
      压缩功率需求/MW13.69
      小时CO2捕集量/(kg·h−1)213 628
      年CO2捕集量/(t·a−1)748 000
      蒸汽耗量/CO2捕集量(t·t−1)1.876
      电耗量/CO2捕集量/(kW·t−1)148.48
      净比排放量/[kgCO2·(MWh)−1]385.7644.92

      Table 6.  Performance comparison

    • 假设1个位于广东省的某燃气工厂的成本,是使用来自中国国内的材料成本和工资率来评估的。间接工程费用,包括工程费用和业主费用,使用工资率和建筑设备租金率。我们做了以下假设:

      本研究仅针对CO2的捕集环节,不考虑后续运输、利用或者封存的技术经济性。所有的电力需求,包括设备电机和控制过程元件的电力需求,都是在工厂中产生的,即来自厂用电。循环冷却水来自附近的水体,成本是抽水和冷却塔运行[14-15]

      针对独立的NGCC工厂、NGCC+PCC集成工厂场景,关键评估成本指标[16],如表7所示,表中列举了需要的成本投入项目及数值。

      项目数值
      天然气价格/(元·Nm−3)2.53
      MEA价格/(元·t−1)16 000
      电/[元·(MWh)−1]549.5
      蒸汽/(元·t−1)200
      工业水/(元·t−1)3.15
      NGCC测算上网电价/[元·(MWh)−1]621.5
      碳排放交易收益/(元·tCO2−1)58
      机组利用小时/h3 500
      项目经济寿命/a30

      Table 7.  Cost input in economic analysis

      静态投资成本,不包括建设利息。

      电力均等化成本(LCOE),是电厂在整个生命周期内发电的单位成本,包括运行和维护成本。CO2静态成本,计算为[17]

      $$ \begin{split} &\qquad { {\rm{CO}}_2的成本 }=\\&\dfrac{[\mathrm{LCOE}] \;{\rm{with}}\; {\rm{CCS}} - [\mathrm{LCOE}] \;{\rm{without}}\;{\rm{CCS}} }{\left[\mathrm{CO}_2 / \mathrm{MW}\right] \;{\rm{without}}\; \mathrm{CCS} - \left[\mathrm{CO}_2 / \mathrm{MW}\right] \;{\rm{with}} \; \mathrm{CCS}} \end{split} $$ (5)
    • 表8所示,可以看出,与NGCC电厂2 220 元/kW的原始成本相比,NGCC+PCC一体化综合工厂的静态投资成本增加了54.28%。这表明投资成本的显著增加,必须降低投资[18-20],以鼓励NGCC电厂使用CCUS。综合工厂的LCOE比NGCC工厂的LCOE高15.96%。事实上,图2图3显示[21],最大的LCOE仍然是天然气成本,将PCC工厂和压缩装置集成到NGCC工厂并不会改变LCOE上天然气价格的重要性。由于燃料价格风险受市场影响,不可避免,当燃料价格上涨时,会对项目的收益率造成较大影响。

      项目NGCCNGCC+PCC
      静态投资成本/(元·kW−1)2 2203 425
      静态投资成本增加/%54.28
      CO2捕集静态投资/(元·CO2−1)1 100
      CO2捕集运营成本/(元·CO2−1)298
      LCOE/[元·(MWh)−1]584.6677.88
      LCOE增加/%15.96
      CO2扣减收益后运营成本/(元·tCO2−1)240

      Table 8.  Economic performance

      Figure 2.  Cost ratios in LCOE for NGCC plant and NGCC+PCC plant

      Figure 3.  Cost allocation in LCOE of PCC plant

      据估算,集成工厂静态的CO2捕集与压缩营运成本为扣减碳交易收益后每捕集1 tCO2 240元。然而,如果考虑到CO2的运输和储存成本,这个值将会更大。

    • 通过使用Ansaldo公司GT36机型的燃气轮机库的数据以及PCC电厂模型对象,对600 MW等级NGCC电厂、PCC和CO2压缩装置的模拟设计,得知NGCC+PCC综合工厂设计CO2捕集率为90%的水平,使得机组净功率输出下降16.05%,厂用电率增加5.55%,而冷却水需求上升50.52%。

      对位于广东省的某燃气电厂进行经济分析时,NGCC+PCC综合工厂静态投资的成本比NGCC电厂高54.28%。另一方面,LCOE预计在综合工厂中增加15.96%,在所有情况下,天然气价格成本是LCOE的最大驱动因素。最后,对综合工厂而言,静态的CO2成本为240元/tCO2。根据目前国内外投运的示范工程,通过不断的技术迭代和改进,预计PCC系统投资和运营成本对比现有模型对象设计会进一步降低。

Reference (21)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return