Citation: | ZHANG Yu, ZHENG Minghui, JING Luyao, XIAO Simin, YANG Haoran, YANG Huaiyu, FAN Xiaoya. Research on the Trend of IGCC Power Generation System and Optimization Method Under the Background of Carbon Reduction[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 127-133. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.015 |
[1] |
SANCHEZ D L, KAMMEN D M. A commercialization strategy for carbon-negative energy [J]. Nature Energy, 2016, 1(1): 15002. DOI: 10.1038/nenergy.2015.2.
|
[2] |
DEL POZO C A, CLOETE S, CLOETE J H, et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture [J]. International Journal of Greenhouse Gas Control, 2019, 83: 265-281. DOI: 10.1016/j.ijggc.2019.01.018.
|
[3] |
AHMED U, ZAHID U, LEE Y. Process simulation and integration of IGCC systems for H2/syngas/electricity generation with control on CO2 emissions [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7137-7148. DOI: 10.1016/j.ijhydene.2019.01.276.
|
[4] |
谢浩, 张忠孝, 李振忠, 等. IGCC常规岛系统优化设计研究 [J]. 洁净煤技术, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010.
XIE H, ZHANG Z X, LI Z Z, et al. Study on optimization design of conventional island system in IGCC [J]. Clean Coal Technology, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010.
|
[5] |
KAPETAKI Z, AHN H, BRANDANI S. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers [J]. Energy Procedia, 2013, 37: 2196-2203. DOI: 10.1016/j.egypro.2013.06.099.
|
[6] |
CAI L L, WU X Y, ZHU X F, et al. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture [J]. Aiche Journal, 2020, 66(7): e164247. DOI: 10.1002/aic.16247.
|
[7] |
DESCAMPS C, BOUALLOU C, KANNICHE M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal [J]. Energy, 2008, 33(6): 874-881. DOI: 10.1016/j.energy.2007.07.013.
|
[8] |
毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
|
[9] |
ABAIMOV N A, OSIPOV P V, RYZHKOV A F. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC [J]. Journal of Physics:Conference series, 2016, 754(11): 112001. DOI: 10.1088/1742-6596/754/11/112001.
|
[10] |
GIUFFRIDA A, MOIOLI S, ROMANO M C, et al. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture [J]. International Journal of Energy Research, 2016, 40(6): 831-845. DOI: 10.1002/er.3488.
|
[11] |
WANG H R, YAN J B, YUAN Y. Thermal and environmental performance of IGCC system with wood dust as feed [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 2769-2778.
|
[12] |
OKEKE I J, ADAMS II T A. Systems Design of a petroleum coke IGCC power plant: technical, economic, and life cycle perspectives [J]. Computer Aided Chemical Engineering, 2019, 47: 163-168. DOI: 10.1016/B978-0-12-818597-1.50026-6.
|
[13] |
SUBRAMANYAM V, GORODETSKY A. Integrated gasification combined cycle (IGCC) technologies [M]. Cambridge: Woodhead Publishing, 2017.
|
[14] |
周贤, 许世森, 史绍平, 等. 回收余热的热电联产IGCC电站研究 [J]. 中国电机工程学报, 2014, 34(增刊1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014.
ZHOU X, XU S S, SHI S P, et al. Study on heat and power cogeneration IGCC plant with waste heat recovery [J]. Proceedings of the CSEE, 2014, 34(Supp. 1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014.
|
[15] |
李召召, 代正华, 林慧丽, 等. IGCC–甲醇多联产系统节能分析 [J]. 中国电机工程学报, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001.
LI Z Z, DAI Z H, LIN H L, et al. Analysis of energy saving of IGCC-methanol polygeneration systems [J]. Proceedings of the CSEE, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001.
|
[16] |
袁铁江, 胡克林, 关宇航, 等. 风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 [J]. 高电压技术, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006.
YUAN T J, HU K L, GUAN Y H, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system [J]. High Voltage Engineering, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006.
|
[17] |
TAPAN D, MATT F. Technical-Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e. g. Solar, Wind) [R]. Lancaster: Advanced Cooling Technologies, Inc., 2014.
|
[18] |
杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性 [J]. 中国电机工程学报, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374.
YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage [J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374.
|
[19] |
UMAR M, MOORE S V, MEREDITH J S, et al. Aspen-based performance and energy modeling frameworks [J]. Journal of Parallel and Distributed Computing, 2018, 120: 222-236. DOI: 10.1016/j.jpdc.2017.11.005.
|
[20] |
CHI J L, LI K Y, ZHANG S J, et al. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13884-13898. DOI: 10.1016/j.ijhydene.2020.03.138.
|
[21] |
SCHWEIGER G, HEIMRATH R, FALAY B, et al. District energy systems: Modelling paradigms and general-purpose tools [J]. Energy, 2018, 164: 1326-1340. DOI: 10.1016/j.energy.2018.08.193.
|
[22] |
马泉. 基于Ebsilon的NGCC机组热力系统性能监测与优化分析 [D]. 南京: 东南大学, 2018.
MA Q. Performance monitoring and optimization analysis of NGCC unit thermodynamic system based on Ebsilon [D]. Nanjing: Southeast University, 2018.
|
[23] |
陈洪溪, 朱志劼. 带CO2捕捉的IGCC系统热力性能研究 [J]. 发电设备, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004.
CHEN H X, ZHU Z J. Study on the IGCC system using CO2 capture technology [J]. Power Equipment, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004.
|
[24] |
张琨, 李寒旭. 干煤粉气流床气化过程数学模型的建立及求解 [J]. 广东化工, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149.
ZHANG K, LI H X. Development and solution of mathematical model for entrained-flow pulverized coal gasification process [J]. Guangdong Chemical Industry, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149.
|
[25] |
AHMED U, KIM C, ZAHID U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture [J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24. DOI: 10.1016/j.cep.2016.10.020.
|
[26] |
HAN L, DENG G Y, LI Z, et al. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant [J]. Applied Thermal Engineering, 2017, 110: 1525-1532. DOI: 10.1016/j.applthermaleng.2016.09.059.
|
[27] |
SHI B, WU E, WU W, et al. Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system [J]. Energy Conversion and Management, 2018, 157: 575-586. DOI: 10.1016/j.enconman.2017.12.030.
|
[28] |
SHI B, WEN F, WU W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop [J]. Energy, 2020, 200: 117564. DOI: 10.1016/j.energy.2020.117564.
|
[29] |
SHI B, XU W, WU E, et al. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture [J]. Journal of Cleaner Production, 2018, 195: 176-186. DOI: 10.1016/j.jclepro.2018.05.152.
|
[30] |
DEL POZO C A, CLOETE S, CLOETE J H, et al. The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture [J]. Energy Conversion and Management, 2019, 201: 112109. DOI: 10.1016/j.enconman.2019.112109.
|
[31] |
YOON S Y, CHOI B S, AHN J H, et al. Improvement of integrated gasification combined cycle performance using nitrogen from the air separation unit as turbine coolant [J]. Applied Thermal Engineering, 2019, 151: 163-175. DOI: 10.1016/j.applthermaleng.2019.01.110.
|
[32] |
DEL POZO C A, CLOETE S, CHIESA P, et al. Integration of gas switching combustion and membrane reactors for exceeding 50% efficiency in flexible IGCC plants with near-zero CO2 emissions [J]. Energy Conversion and Management:X, 2020, 7: 100050. DOI: 10.1016/j.ecmx.2020.100050
|
[33] |
SHAIKH A R, WANG Q H, FENG Y, et al. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103439. DOI: 10.1016/j.ijggc.2021.103439.
|