Advanced Search
ZHANG Yu, ZHENG Minghui, JING Luyao, XIAO Simin, YANG Haoran, YANG Huaiyu, FAN Xiaoya. Research on the Trend of IGCC Power Generation System and Optimization Method Under the Background of Carbon Reduction[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 127-133. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.015
Citation: ZHANG Yu, ZHENG Minghui, JING Luyao, XIAO Simin, YANG Haoran, YANG Huaiyu, FAN Xiaoya. Research on the Trend of IGCC Power Generation System and Optimization Method Under the Background of Carbon Reduction[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 127-133. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.015

Research on the Trend of IGCC Power Generation System and Optimization Method Under the Background of Carbon Reduction

More Information
  • Received Date: June 27, 2022
  • Revised Date: July 04, 2022
  • Accepted Date: July 04, 2022
  • Available Online: September 25, 2022
  •   Introduction  Under the background of "carbon peak and neutrality," IGCC power generation system with CO2 pre-combustion capture technology is of great application potential.
      Method  In this paper, the research status of the IGCC power generation system in recent years and the key directions of further research were summarized, the characteristics of existing research and related optimization suggestions were reviewed from three aspects: diversity of fuel, optimization design of system form, and software application of system simulation. Finally, the potential advantages of deep optimization of IGCC power generation system under the background of "carbon peak and neutrality" were emphatically introduced, and then the prospect of IGCC power generation system was discussed, especially the application prospect of multi-energy coupling and energy storage technology.
      Result  The results show that the novel IGCC power generation system combining multi-energy coupling and energy storage technology has great development potential in the future.
      Conclusion  This work provides some guidance for further study on the subsequent theoretical research of IGCC power generation system.
  • [1]
    SANCHEZ D L, KAMMEN D M. A commercialization strategy for carbon-negative energy [J]. Nature Energy, 2016, 1(1): 15002. DOI: 10.1038/nenergy.2015.2.
    [2]
    DEL POZO C A, CLOETE S, CLOETE J H, et al. The potential of chemical looping combustion using the gas switching concept to eliminate the energy penalty of CO2 capture [J]. International Journal of Greenhouse Gas Control, 2019, 83: 265-281. DOI: 10.1016/j.ijggc.2019.01.018.
    [3]
    AHMED U, ZAHID U, LEE Y. Process simulation and integration of IGCC systems for H2/syngas/electricity generation with control on CO2 emissions [J]. International Journal of Hydrogen Energy, 2019, 44(14): 7137-7148. DOI: 10.1016/j.ijhydene.2019.01.276.
    [4]
    谢浩, 张忠孝, 李振忠, 等. IGCC常规岛系统优化设计研究 [J]. 洁净煤技术, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010.

    XIE H, ZHANG Z X, LI Z Z, et al. Study on optimization design of conventional island system in IGCC [J]. Clean Coal Technology, 2011, 17(6): 30-35. DOI: 10.3969/j.issn.1006-6772.2011.06.010.
    [5]
    KAPETAKI Z, AHN H, BRANDANI S. Detailed process simulation of pre-combustion IGCC plants using coal-slurry and dry coal gasifiers [J]. Energy Procedia, 2013, 37: 2196-2203. DOI: 10.1016/j.egypro.2013.06.099.
    [6]
    CAI L L, WU X Y, ZHU X F, et al. High-performance oxygen transport membrane reactors integrated with IGCC for carbon capture [J]. Aiche Journal, 2020, 66(7): e164247. DOI: 10.1002/aic.16247.
    [7]
    DESCAMPS C, BOUALLOU C, KANNICHE M. Efficiency of an integrated gasification combined cycle (IGCC) power plant including CO2 removal [J]. Energy, 2008, 33(6): 874-881. DOI: 10.1016/j.energy.2007.07.013.
    [8]
    毛健雄. 燃煤耦合生物质发电 [J]. 分布式能源, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.

    MAO J X. Co-firing biomass with coal for power generation [J]. Distributed Energy, 2017, 2(5): 47-54. DOI: 10.16513/j.cnki.10-1427/tk.2017.05.008.
    [9]
    ABAIMOV N A, OSIPOV P V, RYZHKOV A F. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC [J]. Journal of Physics:Conference series, 2016, 754(11): 112001. DOI: 10.1088/1742-6596/754/11/112001.
    [10]
    GIUFFRIDA A, MOIOLI S, ROMANO M C, et al. Lignite-fired air-blown IGCC systems with pre-combustion CO2 capture [J]. International Journal of Energy Research, 2016, 40(6): 831-845. DOI: 10.1002/er.3488.
    [11]
    WANG H R, YAN J B, YUAN Y. Thermal and environmental performance of IGCC system with wood dust as feed [J]. Journal of Chemical and Pharmaceutical Research, 2014, 6(6): 2769-2778.
    [12]
    OKEKE I J, ADAMS II T A. Systems Design of a petroleum coke IGCC power plant: technical, economic, and life cycle perspectives [J]. Computer Aided Chemical Engineering, 2019, 47: 163-168. DOI: 10.1016/B978-0-12-818597-1.50026-6.
    [13]
    SUBRAMANYAM V, GORODETSKY A. Integrated gasification combined cycle (IGCC) technologies [M]. Cambridge: Woodhead Publishing, 2017.
    [14]
    周贤, 许世森, 史绍平, 等. 回收余热的热电联产IGCC电站研究 [J]. 中国电机工程学报, 2014, 34(增刊1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014.

    ZHOU X, XU S S, SHI S P, et al. Study on heat and power cogeneration IGCC plant with waste heat recovery [J]. Proceedings of the CSEE, 2014, 34(Supp. 1): 100-104. DOI: 10.13334/j.0258-8013.pcsee.2014.S.014.
    [15]
    李召召, 代正华, 林慧丽, 等. IGCC–甲醇多联产系统节能分析 [J]. 中国电机工程学报, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001.

    LI Z Z, DAI Z H, LIN H L, et al. Analysis of energy saving of IGCC-methanol polygeneration systems [J]. Proceedings of the CSEE, 2012, 32(20): 1-7. DOI: 10.13334/j.0258-8013.pcsee.2012.20.001.
    [16]
    袁铁江, 胡克林, 关宇航, 等. 风电–氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模 [J]. 高电压技术, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006.

    YUAN T J, HU K L, GUAN Y H, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system [J]. High Voltage Engineering, 2015, 41(7): 2156-2164. DOI: 10.13336/j.1003-6520.hve.2015.07.006.
    [17]
    TAPAN D, MATT F. Technical-Coal Gasification Technologies Subtopic d: Hybrid Integrated Concepts for IGCC (with CCS) and Non-Biomass Renewable Energy (e. g. Solar, Wind) [R]. Lancaster: Advanced Cooling Technologies, Inc., 2014.
    [18]
    杨承, 王旭升, 张驰, 等. 太阳能与压缩空气耦合储能的燃气轮机CCHP系统特性 [J]. 中国电机工程学报, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374.

    YANG C, WANG X S, ZHANG C, et al. Performances of gas turbine-based CCHP system combined with solar and compressed air energy storage [J]. Proceedings of the CSEE, 2017, 37(18): 5350-5358. DOI: 10.13334/J.0258-8013.PCSEE.161374.
    [19]
    UMAR M, MOORE S V, MEREDITH J S, et al. Aspen-based performance and energy modeling frameworks [J]. Journal of Parallel and Distributed Computing, 2018, 120: 222-236. DOI: 10.1016/j.jpdc.2017.11.005.
    [20]
    CHI J L, LI K Y, ZHANG S J, et al. Process simulation and integration of IGCC systems with novel mixed ionic and electronic conducting membrane-based water gas shift membrane reactors for CO2 capture [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13884-13898. DOI: 10.1016/j.ijhydene.2020.03.138.
    [21]
    SCHWEIGER G, HEIMRATH R, FALAY B, et al. District energy systems: Modelling paradigms and general-purpose tools [J]. Energy, 2018, 164: 1326-1340. DOI: 10.1016/j.energy.2018.08.193.
    [22]
    马泉. 基于Ebsilon的NGCC机组热力系统性能监测与优化分析 [D]. 南京: 东南大学, 2018.

    MA Q. Performance monitoring and optimization analysis of NGCC unit thermodynamic system based on Ebsilon [D]. Nanjing: Southeast University, 2018.
    [23]
    陈洪溪, 朱志劼. 带CO2捕捉的IGCC系统热力性能研究 [J]. 发电设备, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004.

    CHEN H X, ZHU Z J. Study on the IGCC system using CO2 capture technology [J]. Power Equipment, 2010, 24(6): 405-408. DOI: 10.3969/j.issn.1671-086X.2010.06.004.
    [24]
    张琨, 李寒旭. 干煤粉气流床气化过程数学模型的建立及求解 [J]. 广东化工, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149.

    ZHANG K, LI H X. Development and solution of mathematical model for entrained-flow pulverized coal gasification process [J]. Guangdong Chemical Industry, 2012, 39(4): 277-278, 280. DOI: 10.3969/j.issn.1007-1865.2012.04.149.
    [25]
    AHMED U, KIM C, ZAHID U, et al. Integration of IGCC and methane reforming process for power generation with CO2 capture [J]. Chemical Engineering and Processing: Process Intensification, 2017, 111: 14-24. DOI: 10.1016/j.cep.2016.10.020.
    [26]
    HAN L, DENG G Y, LI Z, et al. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant [J]. Applied Thermal Engineering, 2017, 110: 1525-1532. DOI: 10.1016/j.applthermaleng.2016.09.059.
    [27]
    SHI B, WU E, WU W, et al. Multi-objective optimization and exergoeconomic assessment of a new chemical-looping air separation system [J]. Energy Conversion and Management, 2018, 157: 575-586. DOI: 10.1016/j.enconman.2017.12.030.
    [28]
    SHI B, WEN F, WU W. Performance evaluation of air-blown IGCC polygeneration plants using chemical looping hydrogen generation and methanol synthesis loop [J]. Energy, 2020, 200: 117564. DOI: 10.1016/j.energy.2020.117564.
    [29]
    SHI B, XU W, WU E, et al. Novel design of integrated gasification combined cycle (IGCC) power plants with CO2 capture [J]. Journal of Cleaner Production, 2018, 195: 176-186. DOI: 10.1016/j.jclepro.2018.05.152.
    [30]
    DEL POZO C A, CLOETE S, CLOETE J H, et al. The oxygen production pre-combustion (OPPC) IGCC plant for efficient power production with CO2 capture [J]. Energy Conversion and Management, 2019, 201: 112109. DOI: 10.1016/j.enconman.2019.112109.
    [31]
    YOON S Y, CHOI B S, AHN J H, et al. Improvement of integrated gasification combined cycle performance using nitrogen from the air separation unit as turbine coolant [J]. Applied Thermal Engineering, 2019, 151: 163-175. DOI: 10.1016/j.applthermaleng.2019.01.110.
    [32]
    DEL POZO C A, CLOETE S, CHIESA P, et al. Integration of gas switching combustion and membrane reactors for exceeding 50% efficiency in flexible IGCC plants with near-zero CO2 emissions [J]. Energy Conversion and Management:X, 2020, 7: 100050. DOI: 10.1016/j.ecmx.2020.100050
    [33]
    SHAIKH A R, WANG Q H, FENG Y, et al. Thermodynamic analysis of 350 MWe coal power plant based on calcium looping gasification with combined cycle [J]. International Journal of Greenhouse Gas Control, 2021, 110: 103439. DOI: 10.1016/j.ijggc.2021.103439.
  • Related Articles

    [1]XU Yang, CAI Anmin, ZHANG Liying, JIA Rong. Progress and Key Technology Prospects in the Renovation and Upgrading of Old Wind Farms[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 58-70. DOI: 10.16516/j.ceec.2024-276
    [2]YUAN Honglei, LIU Xinlong, LIU Xin, CHEN Rongchao. Operation Control and Simulation of Supercritical Reheat Back Pressure Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 78-88. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.009
    [3]YANG Xi, TANG Xiang, LI Jutian, LU Ying, CHEN Ying. Characteristics Analysis and Technical Prospect of Low-Frequency Main Transformer for Offshore Wind Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 139-148. DOI: 10.16516/j.gedi.issn2095-8676.2023.05.017
    [4]ZHANG Zhizhong, CHEN Jiping, TAN Xueqian, YE Daiqi, ZOU Jingcheng. Economic Evaluation of Post-Combustion CO2 Capture Integration Technology in Natural Gas Combined Cycle Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 55-61. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.008
    [5]ZHANG Shaoqiang, SUN Chenyang, YU Luohang, FAN Xiaomei, PAN Dujuan, WEI Shuzhou, ZHOU Xing. Research Progress on Flexibility Modification of Coal-Fired Generating Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 48-54. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.007
    [6]Fei XU, Mingfeng YI, Enzhen HOU, Lei ZHANG, Zhuliang CHEN. Design Method and Application of Assembly Lines and Intelligent Warehouse Based on Demo3D Simulation[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 119-126. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.023
    [7]LIU Zhiyong, ZHAO Xiaodan, QI Hongchang, LI Yanfei. Prospect of UAV Power Inspection Technology in New Era[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 1-5. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.001
    [8]Zhixiang ZHUANG, Xueling ZHAO, Jingjin XIONG, Zhiqiang WANG, Yunxiang HE. Research on Key Technologies of 220 kV Single Circuit Composite Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 77-83. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.014
    [9]LIN Lingli, XU Rongbin. Seismic Simulation of Large Natural Draft Cooling Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(S1): 101-104. DOI: 10.16516/j.gedi.issn2095-8676.2015.S1.022
    [10]Yaoqiu KUANG. Trend and Outlook of Carbon Emission from Energy Consumption in Guangdong Province, China[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.001
  • Cited by

    Periodical cited type(4)

    1. 张伟,魏嘉璐,JOSé Antonio Alonso,孙春文. 碳基固体氧化物燃料电池研究进展. 洁净煤技术. 2024(01): 239-264 .
    2. 陈炫任,王辉,王超,张旭,陈冬,唐嘉诚. 特征参数对微混喷嘴内燃料与空气混合均匀性影响. 洁净煤技术. 2024(02): 265-272 .
    3. 穆延非,于洋,宋石磊,张波,李小宇. 环境温度及湿度对空分系统制氧量影响的评估. 发电设备. 2024(05): 274-277 .
    4. 俞和胜,祁海鹰,谭忠超. “双碳”背景下传统化石能源脱碳制氢增值化利用技术. 清华大学学报(自然科学版). 2023(08): 1226-1235 .

    Other cited types(4)

Catalog

    FAN Xiaoya, 15230826780@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1212) PDF downloads (114) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return