Advanced Search
Wei SHI, Kan ZHENG, Nianxin REN. Dynamic Analysis of Semi-type Floating Offshore Wind Turbine with Failure Conditions Under Metocean Conditions in South China Sea[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 12-20. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.002
Citation: Wei SHI, Kan ZHENG, Nianxin REN. Dynamic Analysis of Semi-type Floating Offshore Wind Turbine with Failure Conditions Under Metocean Conditions in South China Sea[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 12-20. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.002

Dynamic Analysis of Semi-type Floating Offshore Wind Turbine with Failure Conditions Under Metocean Conditions in South China Sea

More Information
  • Received Date: August 26, 2018
  • Revised Date: September 12, 2018
  •   [Introduction]  As a new type of clean and renewable energy, wind power attracts widely attention. With the development of wind power from land to sea, offshore floating wind power has developed rapidly.
      [Method]  In this paper, the commercial software ANSYS-AQWA was used to numerically analyze the dynamic response of the OC4 DeepCwind semi-submersible floating wind turbine under typical sea condition of the South China Sea. The equivalent load method was used to caluclate the aerodynamic loads, and potential flow theory was used to calculate the hydrodynamic loads on the platform and the mooring force on the mooring lines.
      [Results]  The results shows the surge and motion response will increase significantly when one mooring line is lost. This may cause the loss control of the platform. When two mooring lines are lost, the motion response will increase appropriately during a certain time. Therefore, it is recommended to use redundant mooring system, i. g. several mooring lines in one group, to have enough time to replace the damaged mooring line.
      [Conclusion]  This work provides a certain reference to the development of offshore wind power in deep water. Further research is needed to study the mechanism of flooded columns damaged and their numerical modeling methods.
  • [1]
    徐荣彬,元国凯,刘晋超,等. 海上风机导管架基础灌浆连接段受力分析 [J]. 南方能源建设,2015,2(3):80-85.

    XU R B, YUAN G K, LIU J C, et al. Analysis of grouted connection in offshore wind turbine jacket foundation [J]. Southern Energy Construction, 2015, 2(3): 80-85.
    [2]
    SHI W,TAN X,GAO Z,et al. Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions [J]. Cold Regions Science and Technology,2016,123(3):121-139.
    [3]
    赵向前,黄松苗,赵梓杭. 一体化理念在国内海上风电开发建设上的应用探究 [J]. 南方能源建设,2014,1(1):1-6.

    ZHAO X Q, HUANG S M, ZHAO Z H. Application study of integration concept in domestic offshore wind power construction [J]. Southern Energy Construction, 2014, 1(1): 1-6.
    [4]
    SHI W,PARK H C,CHUNG C W,et al. Soil-structure interaction on the response of jacket-type offshore wind turbine [J]. International Journal of Precision Engineering and Manufacturing Green Technology,2015,2(2):139-148.
    [5]
    HUIJS F, BRUIJN R D,SAVENIJE F. Concept design verification of a semi-submersible floating wind turbine using coupled simulations [J]. Energy Procedia,2014,53(7):2-12.
    [6]
    NEJAD A R,BACHYNSKI E E,KVITTEM M I,et al. Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP,spar and semi-submersible floating wind turbines [J]. Marine Structures,2015,42(7):137-153.
    [7]
    CHENG Z,MADSEN H A,CHAI W,et al. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines [J]. Renewable Energy,2017,108(8):207-219.
    [8]
    TRAN T T,KIM D. The coupled dynamic response computation for a semi-submersible platform of floating offshore wind turbine [J]. Journal of Wind Engineering and Industrial Aerodynamics,2015,147(12):104-119.
    [9]
    CEVASCO D,COLLU M,HALL M,et al. On the comparison of the dynamic response of an offshore floating VAWT system when adopting two different mooring system model of dynamics: quasi-static VS lumped mass approach [C]// American Society of Mechanical Engineers. ASME 2017 36th International Conference on Ocean,Offshore and Arctic Engineering,U.S.A.,2017.U.S.A.: American Society of Mechanical Engineers,2017:V010T09A067.
    [10]
    DNV-GL. Standard-floating wind turbine structures: DNVGL-ST-0119 [S]. Norway : DNV-GL,2018.
    [11]
    ROBERTSON A,JONKMAN J,MASCIOLA M,et al. Definition of the semisubmersible floating system for phase II of OC4 [R]. U.S.A.: U.S. Department of Energy,2014.
    [12]
    JONKMAN J,BUTTERFIELD S,MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development [R]. U.S.A.: U.S. Department of Energy, 2009. DOI: 10.2172/947422.
    [13]
    高巍,董璐,黄晶. ANSYS AQWA软件入门与提高 [M]. 北京:中国水利水电出版社,2018.

    GAO W, DONG L, HUANG J. Introduction and improvement of ANSYS AQWA software [M]. Beijing:China Water & Power Press,2018.
    [14]
    周峰华,龙小敏,王盛安,等. 南海北部水文气象实时观测网 [J]. 海洋技术,2013,32(4):67-71.

    ZHOU F H,LONG X M,WANG S A,et al. Real-time hydro-meteorological observation network covering the Northern South China Sea [J]. Ocean Technology,2013,32(4):67-71.
    [15]
    郑崇伟,周林. 近10年南海波候特征分析及波浪能研究 [J]. 太阳能学报,2012,33(8):1349-1356.

    ZHENG C W, ZHOU L. Wave climate and wave energy analysis of the South China Sea in recent 10 years [J]. Acta Energiae Solaris Sinica, 2012,33(8):1349-1356.
    [16]
    郑崇伟,刘铁军,钱粤海. 中国海海表风场、海浪场与El Nino的相关性分析 [J]. 云南大学学报(自然科学版),2014,36(2):214-223.

    ZHENG C W, LIU T J, QIAN Y H. The relationship between sea surface wind field, wave field and El Nino in the China Sea [J]. Journal of Yunnan University(Natural Sciences Edition), 2014,36(2):214-223.
    [17]
    郑崇伟,林刚,孙岩,等. 近22年南海波浪能资源模拟研究 [J]. 热带海洋学报,2012,31(6):13-19.

    ZHENG C W, LIN G, SUN Y, et al. Simulation of wave energy resources in the South China Sea during the past 22 years [J]. Journal of Tropical Oceanography, 2012,31(6):13-19.
    [18]
    刘铁军,郑崇伟,潘静,等. 中国周边海域海表风场的季节特征、大风频率和极值风速特征分析 [J]. 延边大学学报(自然科学版),2013,39(2):148-152.

    LIU T J, ZHENG C W, PAN J, et al. Analysis of seasonal characteristics, gale frequency and extreme wind speed around the China Sea [J].Journal of Yanbian University(Natural Science), 2013,39(2):148-152.
    [19]
    ZAMBRANO T,MACCREADY T,KICENIUK T,et al. Dynamic modeling of deepwater offshore wind turbine structures in gulf of Mexico storm conditions [C]//ASME.25th International Conference on Offshore Mechanics and Arctic Engineering,U.S.A.,2006.U.S.A.American Society of Mechanical Engineers,2006:629-634.
  • Related Articles

    [1]CAO Bei, BAI Wenxiu, YAO Huan, WU Junmei, YIN Chunyu, CHEN Ping. Thermal and Irradiation Creep Behavior of FeCrAl Alloy Based on Molecular Dynamics Simulation[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-398
    [2]ZHANG Rui, ZHANG Ping, GAO Zhikang. Numerical Simulation Analysis of Hydrodynamic Response and Stress Characteristics of Large-Capacity Floating Wind Turbine Foundations[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-417
    [3]CHEN Jiahao, GAO Yifan, YIN Ziwei, ZHENG Can, QU Xiaoqi. Integrated Calculation and Coupled Dynamic Analysis of a Concrete Semi-Submersible Floating Wind Turbine in Offshore Deep Water Area[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 31-41. DOI: 10.16516/j.ceec.2024.2.03
    [4]ZHAO Yebin, REN Jianyu, LE Conghuan. Effect of Wind Loads on Towing Response of Submersible Floating OWT[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(1): 176-184. DOI: 10.16516/j.ceec.2024.1.18
    [5]FU Yushun, SHI Wei, ZHANG Songhao, ZHANG Lixian, REN Yajun, LI Xin, ZHOU Yiming. Experimental Research on the Dynamic Characteristics of Offshore Wind Turbine Model Under the Action of Highly Nonlinear Waves[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.002
    [6]Zhenhua WANG, Donghong ZHANG, Yunxiang HE. Force Analysis of Transmission Tower Under Two Typical Mountain Topography[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 1-9. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.001
    [7]Bo CAO, Longxiang HUANG, Yan LUO. Research on Multiple Pipelines Pullback Force of Trenchless Horizontal Directional Drilling Crossing Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 130-134. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.017
    [8]Senlin LIU, Zhong WANG, Qichun CHEN, Guangbing ZHOU, Xiao WANG, Di SUN. Dynamic Characteristics Analysis of H-class Gas Turbines Foundation Based on Response Surface Methodology[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(2): 17-24. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.003
    [9]Bing ZHOU. Research on Intelligent Fault Warning System of Offshore Wind Turbines[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 133-137. DOI: 10.16516/j.gedi.issn2095-8676.2018.02.019
    [10]Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.017
  • Cited by

    Periodical cited type(16)

    1. 沈正华,王晓莹,周昳鸣,郭晓辉,雷宇,陈昆伦. 深远海漂浮式风电浮体结构优化设计. 能源工程. 2025(02): 1-7 .
    2. 卜忠颉,章滔,何录忠,刘林,阳雪兵,熊顺. 风电主轴配对单列圆锥滚子轴承工作游隙分析. 南方能源建设. 2024(05): 116-122 . 本站查看
    3. 李宏龙,吴春寒,施兴华,曹奔. 动态电缆对海上浮式风机发电效率的影响. 中国海洋平台. 2023(02): 1-6+22 .
    4. 贾文哲,李春,岳敏楠,缪维跑. 系泊失效后漂浮式风力机平台动态响应研究. 风机技术. 2023(02): 44-49 .
    5. 黄正,聂铭,李铭钧,段新辉,刘小璐,罗啸宇. 三边型兆瓦级波浪能装置锚泊系统动力特性分析. 太阳能学报. 2023(06): 30-38 .
    6. 黄正,聂铭,梁永纯,谢文平,刘小璐,罗啸宇. 含聚酯缆绳锚泊系统疲劳分析及布置方位优化. 广东电力. 2023(08): 1-7 .
    7. 茅蓉蓉. 波浪载荷作用下浮式风机平台基础设计及运动响应研究. 中阿科技论坛(中英文). 2023(11): 110-115 .
    8. 聂睿,杨璐璐. 风浪流作用下半潜基础动态响应分析. 低温建筑技术. 2023(11): 129-132+137 .
    9. 黄承庚,陈莉,张欢,陈达. 风浪耦合作用下5MW阶梯立柱式海上风机动态响应研究. 中国电机工程学报. 2022(12): 4477-4487 .
    10. 李蜀军,李春,王博,张万福. 恶劣海况下系泊失效对漂浮式风电场平台影响. 热能动力工程. 2021(04): 126-134 .
    11. 施伟,薛瑞宁,侯晓彬,修昊,张礼贤. 10 MW级半潜漂浮式风机的动力响应. 船舶工程. 2021(10): 1-9+43 .
    12. 张轲,陈兵. 多形式浮式风机半潜式平台运动特性研究. 海洋技术学报. 2021(05): 92-104 .
    13. 吴峰,李巍. 近海风力发电机桩基础的动力学研究. 低碳世界. 2020(09): 114-115 .
    14. 刘清泉,任年鑫,周道成. 半潜式风力机平台撤除过程动力响应分析. 海南大学学报(自然科学版). 2020(03): 277-282 .
    15. 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析. 浙江大学学报(工学版). 2020(11): 2196-2203 .
    16. 金辉,王腾. 考虑二阶波浪荷载效应的海上TLP浮式风机分析. 海洋技术学报. 2019(01): 66-72 .

    Other cited types(10)

Catalog

    Nianxin REN

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1360) PDF downloads (150) Cited by(26)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return