• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 2 Issue 1
Aug.  2020
Turn off MathJax
Article Contents

Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
Citation: Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017

Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings

doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
  • Received Date: 2014-10-14
  • Publish Date: 2015-03-25
  • The dynamic responses of a transmission tower with angle section members under lateral wind loadings are actively investigated in this study. A real large scale transmission tower is taken as an example to establish the dynamic analytical model by using three dimensional beam elements. The wind loadings in the lateral direction, which are acted on the transmission tower, are simulated to investigate the structural dynamic responses. The observations indicate that the dynamic responses in both the lateral and longitudinal directions are observed if the tower is subjected to lateral wind loadings. The peak wind induced responses in the lateral direction are much larger than those in the longitudinal direction. In addition, the peak stresses of some major members are larger than the yielding strength of the steel material. Therefore, the effects of the lateral wind loadings should be taken into consideration in the design and construction of the transmission tower.
  • [1] 李鹏云,陈波,张峰,等. 不对称导线对输电转角塔动力性能影响研究 [J]. 武汉理工大学学报,2012, 34(8): 113-117.

    LI Pengyun, CHEN Bo, ZHANG Feng, et al. Effects of Asymmetric Cables on the Dynamic Characteristics of Transmission Angle-tower [J]. Journal of Wuhan University of Technology, 2012, 34(8): 113-117.
    [2] 李宏男,王前信. 大跨越输电塔体系的动力特性 [J]. 土木工程学报,1997, 30(5): 28-36.

    LI Hongnan WANG Qianxin. Dynamic Behavior of Large-Span Power Transmission Tower [J]. China Civil Engineering Journal, 1997, 30(5): 28-36.
    [3] 陈波,郑瑾,瞿伟廉. 基于磁流变阻尼器的输电线路的风致振动控制 [J]. 振动与冲击,2008, 27(3): 71-74.

    CHEN Bo, ZHENG Jin, QU Weilian. Wind-induced Response Mitigation of Transmission Tower -line System By Using Magnetorheological Dampers [J]. Journal of Vibration and Shock, 2008,27(3): 71-74.
    [4] Kempner L J, Smith S. Cross-rope Transmission Tower-line Dynamic Analysis [J]. Journal of Structural Engineering ASCE, 1984, 110(6): 1321-1335.
    [5] 陈波,瞿伟廉,郑瑾. 输电塔线体系风振反应的半主动摩擦阻尼控制 [J]. 工程力学,2009, 26(1): 221-226.

    CHEN Bo, QU Weilian, ZHENG Jin. Semi-Active Control For Wind-Induced Responses Of Transmission Tower-Line System Using Friction Dampers [J]. Engineering Mechanics, 2009, 26(1): 221-226.
    [6] 陈波,郑瑾,瞿伟廉. 高压输电塔风振控制的能量特性 [J]. 华中科技大学学报:自然科学版,2009, 37(2): 121-124.

    CHEN Bo, ZHENG Jin, QU Weilian. Energy Property of the Controlled-Vibration Produced by Wind in Transmission Tower-line Systems [J]. Journal of Huazhong University of Science and Technology:Nature Science Edition, 2009, 37(2): 121-124.
    [7] 何敏娟,杨必峰. 江阴500 kV拉线式输电塔脉动实测 [J]. 结构工程师,2003(4): 74-79.

    HE Minjuan, YANG Bifeng. Site Vibration Experiment of Jiangyin 500 kV Guyed Transmission Tower [J]. Structural Engineers, 2003(4): 74-79.
    [8] CHEN B, ZHENG J, QU W L. Control of Wind-induced Response of Transmission Tower-line System by Using Magnet or Heological Dampers [J]. International Journal of Structural Stability and Dynamics. 2009, 9(4): 661-685.
    [9] 郑瑾.输电线路的风致振动被动耗能控制 [J]. 武汉理工大学学报,2007, 29(12): 80-83.

    ZHENG Jin. Wind-induced Vibration Control of Transmission Tower-line System by Using Passive Devices [J]. Journal of Wuhan University of Technology, 2007, 29(12): 80-83.
    [10] 陈波,郑瑾,王建平. 高压输电塔的摩擦耗能减震控制 [J]. 武汉理工大学学报,2009, 31(1): 78-82.

    CHEN Bo, ZHENG Jin, WANG Jianping. Seismic Mitigation of Transmission Tower by Using Passive Friction Dampers [J]. Journal of Wuhan University of Technology, 2009, 31(1): 78-82.
    [11] 陈亦,唐国安. 大跨越输电线路塔的振动控制[J]. 特种结构,2000, 17(3): 43-46.

    CHEN Yi, TANG Guoan. Vibration Control of Long Span Transmission System[J]. Special Pecial Structures, 2000, 17(3): 43-46.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(6)

Article Metrics

Article views(444) PDF downloads(12) Cited by()

Related

Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings

doi: 10.16516/j.gedi.issn2095-8676.2015.01.017

Abstract: The dynamic responses of a transmission tower with angle section members under lateral wind loadings are actively investigated in this study. A real large scale transmission tower is taken as an example to establish the dynamic analytical model by using three dimensional beam elements. The wind loadings in the lateral direction, which are acted on the transmission tower, are simulated to investigate the structural dynamic responses. The observations indicate that the dynamic responses in both the lateral and longitudinal directions are observed if the tower is subjected to lateral wind loadings. The peak wind induced responses in the lateral direction are much larger than those in the longitudinal direction. In addition, the peak stresses of some major members are larger than the yielding strength of the steel material. Therefore, the effects of the lateral wind loadings should be taken into consideration in the design and construction of the transmission tower.

Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
Citation: Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. doi: 10.16516/j.gedi.issn2095-8676.2015.01.017
  • 输电塔是一种典型的电力生命线工程结构,确保其长期安全的使用具有重要的实际意义[1-3]。我国南方沿海地区多发强台风荷载,目前多有强风作用下输电杆塔损伤破坏的相关报道[4-6],而我国现行的输电杆塔设计基于静力风荷载的分析方法,未充分考虑动力风荷载对输电杆塔的作用,因此也就无法有效掌握强风荷载作用下的结构风致响应特点和规律。对于输电杆塔而言,由于输电导线的作用,其侧向刚度要小于纵向刚度,侧向强风作用往往是输电杆塔的不利风荷载工况。因此,结合输电塔的工程实际,研究其在侧向横风荷载作用下的动力响应特点和规律非常必要。

    本文以某大型角钢输电塔为工程背景,基于空间梁单元建立了输电塔的动力分析模型。在此基础上模拟了结构的风荷载时程,并对该输电塔在侧向横风作用下的动力响应进行了分析研究。

  • 作为典型的空间杆系结构,输电塔可以采用空间梁单元进行模拟。梁单元每个节点有3个平动自由度和3个转动自由度,共计6个自由度。单元两端各有6个位移和力分量,整个单元共有12个自由度。整体坐标系下输电杆塔结构的质量矩阵和刚度矩阵可表示为[7-9]

    ((1))
    ((2))

    式中: 分别为第i单元的刚度矩阵和质量矩阵; 为第i单元的单元转换矩阵。

    本文研究对象为某大型输电塔结构,分析过程采用ANSYS软件为平台,建立了输电塔结构的三维空间有限元模型,并基于该模型进行了侧向横风作用下的输电塔结构风致振动分析。在ANSYS程序中,所研究的输电杆塔的梁单元采用Beam 188单元模拟。Beam 188是三维线性两节点梁单元,该单元基于Timoshenko梁结构理论并考虑了剪切变形的影响,因此该单元适合分析纤细的杆件结构。

    本文模型将用Bema 188模拟塔身、塔腿主材及横隔材。其他附属杆件按照空间桁架单元处理,用Link 8单元模拟。Link 8单元是有着广泛的工程应用的杆单元,比如可以用来模拟桁架、缆索、连杆、弹簧等等。对输电塔结构而言,其风荷载一般是用风速来表示的。空间中某一点的风速通常用一个标准的随机过程来描述,因此其全部特性可完全由功率谱密度函数反映。对于输电塔结构而言,需要反映空间不同位置风速之间的相互关系,此时,空间的风速为一个时变随机场。可用下式对脉动风荷载过程进行模拟[10-11]

    ((3))
    ((4))

    式中:j=1,2,…,nωu为截断频率;ωml为双索引频率;φml为在区间[0,2π]上均匀分布的随机相位角。

    本研究在此进行了某号输电塔线体系的多维风荷载模拟。模拟过程中考虑了输电塔不同节点层之间的空间相关性。空间相关性包括水平相关性和竖向相关性。由于输电塔结构体系节点众多,因此在模拟过程中依据不同高度选取了不同高度的节点进行模拟。同一高度处的节点则认为可以选取相同的风速时程。

  • 某角钢输电塔塔高为39.0 m,为干字形塔,底部根开10 m,塔体由Q 345的角钢组成。图1给出了该输电塔的平面图,图2给出了该输电塔的立面图。由于该塔地处广东沿海珠江口地区,属于我国南部强风多发地区,结构容易发生较为强烈的风致振动。本研究在此模拟了该输电塔的强风荷载时程,在此基础上进行了结构的在侧向横风作用下的风致动力响应分析计算,并考察了结构的风致响应的特点和规律。

    Figure 1.  Plan of the Transmission Tower

    Figure 2.  Elevation of the Transmission Tower

    图3图4分别给出了塔顶的X向和Y向的位移、速度和加速度的响应时程曲线。由图可知,在侧向横风作用下,输电塔将同时发生侧向(X向)和纵向(Y向)的振动,但侧向振动的响应明显大于纵向振动的响应。由本文分析结果可知,塔顶的侧向位移峰值可达0.44 m,而纵向位移峰值则为0.18 m,侧向峰值位移响应约为纵向的2.4倍。两者的速度响应峰值较为接近,均为0.3 m/s左右。对比两个方向的风致振动结果可知,两者的加速度响应差别最大。侧向和纵向的峰值加速度响应分别为5.0 m/s2和2.0 m/s2

    Figure 3.  The Displacement, Velocity and Acceleration Response with Time Curve in X Direction of Dot.1 on the Tower

    Figure 4.  The Displacement, Velocity and Acceleration Response with Time Curve in Y Direction of Dot.1 on the Tower

    图5分别给出了塔身节点4的位移侧向(X向)和纵向(Y向)的响应时程曲线。由图可知,其它塔身节点的风致动力响应与塔顶节点具有相似的特点和规律。

    Figure 5.  The Displacement Response withTime Curve in X and Y Direction of Dot.4 on the Tower

    图6给出了输电塔塔顶节点发生峰值位移时刻的结构杆件的轴应力云图。

    Figure 6.  The Axial Stress of Transmission Tower Members

    图6结果可知,在侧向强风荷载作用下,结构构件产生了很大的内应力响应。部分主材杆件的峰值内应力已经超过了材料的屈服强度345 MPa。

    对比分析可知,发生应力超限的杆件主要为四周的主材杆件。随着高度的增加,输电塔主材杆件的峰值应力逐渐减小,底部杆件的峰值应力最大。因此对于本文所研究的角钢输电塔而言,在侧向横风作用下底部主材最容易发生损伤破坏。

  • 本文以某大跨度角钢输电塔为实际工程背景,建立了结构的有限元模型,研究了侧向横风作用下的输电塔风致动力响应问题。

    研究表明,在侧向横风作用下输电塔将同时产生侧向和纵向的风致振动。其中侧向振动峰值要明显大于纵向振动峰值。在侧向强风荷载作用下,部分主材杆件的峰值内应力已经超过了材料的屈服强度。随着高度的增加,输电塔主材杆件的峰值应力逐渐减小,底部杆件的峰值应力最大。因此在角钢输电塔的设计建造过程中,应当充分考虑到侧向横风的影响。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return