Advanced Search
Jueting MO, Guowei SONG, Lang SONG. Preliminary Discussion on the Ecological Development Feasibility of "Offshore Wind Power + Ocean Ranch" in Yangjiang, Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 122-126. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.018
Citation: Jueting MO, Guowei SONG, Lang SONG. Preliminary Discussion on the Ecological Development Feasibility of "Offshore Wind Power + Ocean Ranch" in Yangjiang, Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 122-126. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.018

Preliminary Discussion on the Ecological Development Feasibility of "Offshore Wind Power + Ocean Ranch" in Yangjiang, Guangdong

More Information
  • Received Date: April 15, 2020
  • Revised Date: May 13, 2020
  • Introduction The combination of ocean ranch and offshore wind power is a typical case of the efficient integrated development of modern agriculture and new energy industry. This paper makes a preliminary discussion on the feasibility of the ecological development of "offshore wind power + ocean ranch" in Yangjiang, Guangdong, which responding to the national policy of "three-dimensional use of sea space and maximum utilization of resources" and relieving the supply pressure of aquatic resources in port waters.
        Method   According to the methods of monitoring and analysis of water and waste water and the specifications for marine monitoring, the chlorophyll α and primary productivity as well as the species of marine organisms in offshore wind power area of China Three Gorges Corporation in Yangjiang were counted and analyzed by means of ultraviolet visible spectrophotometer, stereomicroscope, biomicroscope, etc.
        Result   It showed that the average value of chlorophyll α content was 1.79 mg / m3 in the surveyed sea area, the average value of primary productivity was 353.05 mg·C/(m2·d). Besides, There are 4 phyla and 77 species of phytoplankton, 11 phyla and 76 species of zooplankton, 5 phyla and 31 species of macrobenthos, 5 phyla and 43 species of intertidal organisms, and 3 phyla and 37 species of nekton.
        Conclusion   The sea area of the offshore wind power has high primary productivity, which is also rich in phytoplankton and zooplankton, large benthic organisms, intertidal organisms, nekton, etc. Thus, it has ecological foundation and advantages of the integrated development of "offshore wind power + ocean ranch", and also has great potential for fishery resources and the feasibility of ocean ranch construction.
  • MO Jueting,SONG Guowei,SONG Lang.Preliminary Discussion on the Ecological Development Feasibility of "Offshore Wind Power + Ocean Ranch" in Yangjiang, Guangdong[J].Southern Energy Construction,2020,07(02):122-126.

  • [1]
    杨红生,茹小尚,张立斌,等. 海洋牧场与海上风电融合发展:理念与展望 [J]. 中国科学院院刊,2019,34(6):700-707.
    [2]
    WILHELMSSOND,MALMT. Fouling assemblages on offshore wind power plants and adjacent substrata [J]. Estuarine Coastal and Shelf Science,2008,79(3):459-466.
    [3]
    AURORER,GÉRALDINEL,PHILIPPEP J,et al. Measuring sensitivity of two OSPAR indicators for a coastal food web model under offshore wind farm construction [J]. Ecological Indicators,2019,96(1):728-738.
    [4]
    PETERSENJ K,MALMT. Offshore windmill farms:threats to or possibilities for the marine environment [J]. Ambio,2006,35(2):75-80.
    [5]
    罗茵,方琼玟. “海洋牧场+海上风电”不止于构想 [J]. 海洋与渔业,2019(2):73-75.
    [6]
    ALEXANDERK A,MEYJESS A,HEYMANSJ J. Spatial ecosystem modelling of marine renewable energy installations:gauging the utility of ecospace [J]. Ecological Model,2016,331(6):115-128.
    [7]
    SPYROSF,THEOCHARIST. Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs) [J]. Renew and Sustain Energy Review,2017,70(4):775-785.
    [8]
    刘芳. 海洋中环环相扣的食物链 [M]. 合肥:安徽文艺出版社,2011.
    [9]
    宁修仁,刘子琳,蔡昱明. 我国海洋初级生产力研究二十年 [J]. 东海海洋,2000,18(3):13-20.
    [10]
    赵文. 水生生物学 [M]. 北京:中国农业出版社,2005.
    [11]
    河海大学《水利大辞典》编辑修订委员会. 水利大辞典 [M]. 上海:上海辞书出版社,2015.
  • Related Articles

    [1]LI Wei, FAN Shaotao, WANG Jinxi, LIU Tianhui. Design of Ocean Floating Structures: Prediction of Hydrodynamic Coefficients[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(6): 18-32. DOI: 10.16516/j.ceec.2024.6.02
    [2]TAN Renshen, QI Yongle, ZHOU Bing, FAN Yongchun, FENG Yiyang, PENG Jiajun, MAI Leixin. Application Practice of 5G Customized Network Technology in Intelligent Management and Ecological Environment Monitoring of Offshore Wind Farm[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(4): 65-75. DOI: 10.16516/j.ceec.2024.4.07
    [3]YANG Jie, ZHANG Jianhua, MA Zhaorong, LIU Donghua, WANG Hongqing, YIN Ziwei. Development Trend and Technical Challenges of the Integration of Offshore Wind Turbine with Marine Ranch[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(2): 1-16. DOI: 10.16516/j.ceec.2024.2.01
    [4]NIU Haifeng, LI Xianghui, LIANG Feng, LI Ya, ZHANG Zijian. Research and Application of Geotechnical Data Consistency in Marine Site Exploration[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 124-132. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.016
    [5]Xinhua LIU, Meng WU. Application of Multi-Beam Sounding System in Offshore Wind Farm Survey[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(3): 51-57. DOI: 10.16516/j.gedi.issn2095-8676.2021.03.007
    [6]XIAO Jianqun, LI Peng. Research on the Marine Organisms Control Scheme of Long-Distance Water Transfer Project[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 113-117. DOI: 10.16516/j.gedi.issn2095-8676.2019.04.018
    [7]Gongquan SHI. Application of Drone Surveying on Heat Disposal to the Ocean from Nuclear Power Plants[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 94-98. DOI: 10.16516/j.gedi.issn2095-8676.2019.02.017
    [8]Tingsong WANG, Li LIU. Research on Seamless Management of Multi-source Marine Survey Data and Its Electric Implementation[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(2): 152-155. DOI: 10.16516/j.gedi.issn2095-8676.2016.02.030
    [9]Xian WANG, Tao CHEN, Qi ZHAO, Guokai YUAN. Comparison of Several Design Specifications for Grouted Connections in Marine Engineering[J]. SOUTHERN ENERGY CONSTRUCTION, 2016, 3(1): 86-91,95. DOI: 10.16516/j.gedi.issn2095-8676.2016.01.018
    [10]Xianhui ZHANG, Daqing FANG, Chengzhu ZHONG, Chuqi XU, Yali SU. Application Research of Heavy-duty Anticorrosion Coatings for Marine Engineering Equipment[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 23-27. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.004
  • Cited by

    Periodical cited type(17)

    1. 陈惠,王佳. 海洋牧场与海上风电融合发展现状及趋势. 水产养殖. 2025(05): 18-22 .
    2. 阳杰,张建华,马兆荣,刘东华,王洪庆,尹梓炜. 海上风电与海洋牧场融合发展趋势与技术挑战. 南方能源建设. 2024(02): 1-16 . 本站查看
    3. 贵瑞洁,陈建仲. 甘肃酒泉风电产业生态化发展研究. 投资与合作. 2024(06): 84-86 .
    4. 段怡心,刘一霖,张亦飞,方欣,侯宗浩,杨辉. 基于CiteSpace的海上风电场和海水养殖融合发展研究知识图谱分析. 海洋科学. 2024(12): 72-82 .
    5. 宋础. 海洋养殖设备对海上风电结构受力影响分析. 上海节能. 2023(05): 655-660 .
    6. 吴迪,任重进,韩荣贵,杨金培,石金城. 海上风电与海洋牧场融合发展现状与实践探索. 中国渔业经济. 2023(03): 78-84 .
    7. 孙腾,龚语嫣,冯翠翠,何旭辉,张函,化天然,曲良,叶观琼. 海上风牧融合的难题与挑战. 海洋开发与管理. 2023(09): 19-29 .
    8. 张舒怡,李智,林和山,黄雅琴,何雪宝,林俊辉,刘坤,牟剑锋,王建军,陆志强,徐虹霓. 兴化湾海上风电场建设前后大型底栖动物群落变化. 应用海洋学学报. 2023(04): 591-603 .
    9. 许仕杰,程正顺,杨立军,曹群. 风浪流联合作用下半潜式风机与网箱集成系统耦合动力响应特性. 中国舰船研究. 2023(06): 66-75 .
    10. 袁华荣,陈丕茂. 广东省海洋牧场发展现状、问题与对策. 广东农业科学. 2022(07): 141-154 .
    11. 张嘉祺,王琛,梁发云. “双碳”背景下我国海上风电与海洋牧场协同开发初探. 能源环境保护. 2022(05): 18-26 .
    12. Huarong YUAN,Pimao CHEN. Current Situation, Problems and Countermeasures of Marine Ranching Development in Guangdong Province, China. Asian Agricultural Research. 2022(11): 1-10+14 .
    13. 孙岳,蒋欣慰,秦松,陈少波,罗一单,单乐州,郭瑾. 海上风电和海洋牧场融合发展现状与展望. 水产养殖. 2022(11): 70-73 .
    14. 卜凌嘉. 我国海上风电项目审批法律问题及其应对——以海域使用许可和跨界海洋环境影响评价为中心. 法治论坛. 2021(02): 143-155 .
    15. 胡韧,叶锦韶,戚永乐. 海上风电场对鸟类的影响及其危害预防. 南方能源建设. 2021(03): 1-7 . 本站查看
    16. 饶广龙,王鹏,张宇凡. 自升式海上风电安装平台发展概述. 船舶工程. 2021(10): 16-21 .
    17. 刘桢,俞炅旻,黄德财,王涛,郑艺多. 海上风电发展研究. 船舶工程. 2020(08): 20-25 .

    Other cited types(3)

Catalog

    Lang SONG

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(3)  /  Tables(1)

    Article Metrics

    Article views (1436) PDF downloads (298) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return