Advanced Search
PAN Hongguan,CHEN Chaohe.Vibration Characteristics Analysis of Suction Bucket Jacket Offshore Wind Turbine in Different Boundary Conditions[J].Southern Energy Construction,2021,08(02):37-45.. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.006
Citation: PAN Hongguan,CHEN Chaohe.Vibration Characteristics Analysis of Suction Bucket Jacket Offshore Wind Turbine in Different Boundary Conditions[J].Southern Energy Construction,2021,08(02):37-45.. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.006

Vibration Characteristics Analysis of Suction Bucket Jacket Offshore Wind Turbine in Different Boundary Conditions

More Information
  • Received Date: March 18, 2021
  • Revised Date: April 27, 2021
  •   Introduction  The suction bucket jacket is a new type of offshore wind turbine foundation with many advantages, and its vibration characteristics are obviously different from those of traditional foundations. Correctly handling the boundary conditions of the infinite foundation is very important to accurately analyze the vibration problem, so this paper analyzes the vibration characteristics of the suction bucket jacket offshore wind turbine under different boundary conditions.
      Method  Taking a suction bucket jacket offshore wind turbine as the analysis object, a full three-dimensional finite element model of structure and soil coupling was established in ANSYS APDL, the influence of boundary conditions on the natural frequency was studied, and the sensitivity analysis of related parameters was carried out.
      Result  Different boundary conditions have a great influence on the natural frequency of the whole structure. Changing the boundary conditions has a greater influence on the axial stiffness and torsional stiffness than the bending stiffness of the structure. The natural frequency of the whole structure increases with the spring stiffness of the viscoelastic boundary, the elastic modulus of the soil, and the coefficients of friction between the bucket and soil.
      Conclusion  The related factors that affect the calculation accuracy of the natural frequency of the whole structure are analyzed, which can provide references for engineering calculations.
  • PAN Hongguan,CHEN Chaohe.Vibration Characteristics Analysis of Suction Bucket Jacket Offshore Wind Turbine in Different Boundary Conditions[J].Southern Energy Construction,2021,08(02):37-45.

  • [1]
    OH K Y,NAM W,RYU M S,et al. A review of foundations of offshore wind energy convertors:current status and future perspectives [J]. Renewable and Sustainable Energy Reviews,2018(88):16-36.
    [2]
    杨晓强,黄富涛,张星波,等. 基于系统振动性能的海上风电单桩基础入土深度研究 [J]. 风能,2015(3):76-79.

    YANGX Q,HUANGF T,ZHANGX B,et al. Research on penetration depth of offshore wind power single pile foundation based on system vibration performance [J]. Wind Energy,2015(3):76-79.
    [3]
    杨勇,陆道辉,黄冬明. 3 MW两叶片海上风电机组整机模态分析 [J]. 风能,2016(4):78-80.

    YANGY,LUD H,HUANGD M. Modal analysis of the whole 3 MW two-blade offshore wind turbine [J]. Wind Energy,2016(4):78-80.
    [4]
    邓丹平. 导管架式海上风电机组参数敏感性分析 [D]. 北京:华北电力大学,2019.

    DENGD P. Parameters sensitivity analysis of jacket offshore wind turbine [D]. Beijing:North China Electric Power University,2019.
    [5]
    曹广启,毛淳诚. 基于五桩导管架基础的海上风机支撑结构自振特性分析 [J]. 上海电气技术,2016,9(1):59-62.

    CAOG Q,MAOC C. Analysis of natural vibration characteristics of offshore wind turbine support structure based on five-pile jacket foundation [J]. Journal of Shanghai Electric Technology,2016,9(1):59-62.
    [6]
    刘红军,张鹏,王荃迪,等. 桩筒复合基础筒体结构优化及承载性能分析 [J]. 哈尔滨工程大学学报,2018,39(7):1165-1171.

    LIUH J,ZHANGP,WANGQ D,et al. Optimum structural design and loading advantage analysis of pile-bucket foundation [J]. Journal of Harbin Engineering University,2018,39(7):1165-1171.
    [7]
    王伟,杨敏. 海上风电机组基础结构设计关键技术问题与讨论 [J]. 水力发电学报,2012,31(6):242-248.

    WANGW,YANGM. Review and discussion on key technologies in foundation design of offshore wind power [J]. Journal of Hydroelectric Engineering,2012,31(6):242-248.
    [8]
    陈明明. 土—相邻结构相互作用有限元数值模拟分析 [D]. 昆明:昆明理工大学,2013.

    CHENM M. Finite element numerical simulation analysis of soil-adjacent structures interaction [D]. Kunming:Kunming University of Science & Technology,2013.
    [9]
    顾栋辉. 波浪作用下海上风电机组结构与基础相互作用与动力分析研究 [D]. 南京:东南大学,2017.

    GUD H. Dynamic analysis of structure and foundation interaction for offshore wind turbine wave forces [D]. Nanjing:Southeast University,2017.
    [10]
    包世华. 结构动力学 [M]. 武汉:武汉理工大学出版社,2005.

    BAOS H. Structural dynamics [M]. Wuhan:Wuhan University of Technology Press,2005.
    [11]
    廖振鹏. 工程波动理论导论 [M]. 北京:科学出版社,2002.

    LIAOZ P. Introduction to engineering wave theory [M]. Beijing: Science Press,2002.
    [12]
    刘晶波,王振宇,杜修力,等. 波动问题中的三维时域粘弹性人工边界 [J]. 工程力学,2005(6):46-51.

    LIUJ B,WANGZ Y,DUX L,et al. Three-dimensional viscoelastic artificial boundary in time domain for wave motion problem [J]. Engineering Mechanics,2005(6):46-51.
    [13]
    王振宇. 大型结构-地基系统动力反应计算理论及其应用研究 [D]. 北京:清华大学,2002.

    WANGZ Y. Research on theory and application of dynamic response calculation of large-scale structure-foundation system [D]. Beijing:Tsinghua University,2002.
    [14]
    唐必刚,赵怡彬. 基于ANSYS接触分析的拱座台阶基础计算 [J]. 公路工程,2017,42(3):170-174+191.

    TANGB G,ZHAOY B. Computation of stress on the step-shaped foundation of arch seat according to contact analysis by ANSYS [J]. Highway Engineering,2017,42(3):170-174+191.
    [15]
    CHENS H L,WUX L. The value range of contact stiffness factor between pile and soil based on penalty function [J]. IOP Conference Series:Earth and Environmental Science,2018,128(1):1-6.
    [16]
    张燎军. 水工结构接触问题的力学模型及其在三峡工程中的应用 [D]. 南京: 河海大学,2005.

    ZHANGL J. Mechanical model for hydraulic structure contact problem and its applications in the three gorges project [D]. Nanjing: Hohai University,2005.
    [17]
    李益. 三桩基础海上风力发电结构的自振特性分析 [D]. 大连:大连理工大学,2013.

    LIY. Natural vibration characteristic analysis of triple-piles based offshore wind power structure [D]. Dalian:Dalian University of Technology,2013.
    [18]
    叶朝良,高新强,宋鹤. 玻璃钢夹砂管管土摩擦系数室内模型试验研究 [J]. 石家庄铁道大学学报(自然科学版),2015,28(3):30-34+39.

    YEC L,GAOX Q,SONGH. Indoor model test research on friction coefficient of FRP-sand-pipe and soil [J]. Journal of Shijiazhuang Tiedao University(Natural Science),2015,28(3):30-34+39.
    [19]
    许宏发,吴华杰,郭少平,等. 桩土接触面单元参数分析 [J]. 探矿工程(岩土钻掘工程),2002(5):10-12.

    XUH F,WUH J,GUOS P,et al. Study on the parameters of pile soil contact surface element [J]. Drilling Engineering,2002(5):10-12.
    [20]
    刘晶波,杜义欣,闫秋实. 粘弹性人工边界及地震动输入在通用有限元软件中的实现 [C]// 中国土木工程学会. 第三届全国防震减灾工程学术研讨会,南京,2007. 南京:《防灾减灾工程学报》编辑部,2007:43-48.

    LIUJ B,DUY X,YANQ S. Viscous-elastic artificial boundary and earthquake dynamic input in common finite element software [C]// China Civil Engineering Society. National Seismic on Earthquake Prevention and Disaster Reduction Engineering,Nanjing,2017. Nanjing:Editorial Department of Journal of Disaster Prevention and Mitigation Engineering,2007:43-48.
    [21]
    贾堤,石峰,郑刚,等. 深基坑工程数值模拟土体弹性模量取值的探讨 [J]. 岩土工程学报,2008,30(增刊1):155-158.

    JIAD,SHIF,ZHENGG,et al. Elastic modulus of soil used in numerical similation of deep foundation pits [J]. Chinese Journal of Geotechnical Engineering,2008,30(Supp.1):155-158.
    [22]
    中华人民共和国交通运输部. 港口工程桩基规范:JTS 167—4—2012 [S]. 北京:人民交通出版社,2012.

    Ministry of Transport of the People′s Republic of China. Port Engineering Pile Foundation Specification:JTS 167—4—2012[S]. Beijing:China Communications Press,2012.
  • Related Articles

    [1]LI Jingyi, ZHANG Puyang, LE Conghuan, DING Hongyan, QI Xiaoliang. Research on Liquefaction Resistance of Bucket Foundation for Offshore Wind Turbines[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 18-31. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.003
    [2]LIU Huaquan, LI Yuansong, PAN Shengping, ZHANG Xin, ZHAO Yong. Key Technology of Construction Process Control of Guide Frame Platform Suction Bucket Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(1): 98-104. DOI: 10.16516/j.gedi.issn2095-8676.2023.01.012
    [3]Hao REN, Zhaorong MA, Cong LI, Lu XU. Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(S1): 65-69. DOI: 10.16516/j.gedi.issn2095-8676.2021.S1.010
    [4]Daojun NI, Yaoyao XIAO. Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 26-31. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.004
    [5]Bo LIU, Aiguo PEI. Review of Air-floating Towing Characteristics of Bucket Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 81-90. DOI: 10.16516/j.gedi.issn2095-8676.2020.02.013
    [6]LI Yajun, BI Mingjun. Study on Scour Test of Jacket Foundation for Offshore Substation[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(S1): 123-128. DOI: 10.16516/j.gedi.issn2095-8676.2018.S1.022
    [7]Puyang ZHANG, Xuanxu HUANG. Application Research on Suction Bucket Foundation for Offshore Wind Power[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(4): 1-11. DOI: 10.16516/j.gedi.issn2095-8676.2018.04.001
    [8]Qinghai ZHANG, Shanfeng LI, Shuwen WANG. Research and Application of Jacket Multi-pile Structure Foundation Installa-tion for Offshore Wind Power Engineering[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 126-132. DOI: 10.16516/j.gedi.issn2095-8676.2018.02.018
    [9]Ke CHEN, Zhaorong MA. Design Analysis of Offshore Substation with Skirt Pile Jacket Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2018, 5(2): 93-98. DOI: 10.16516/j.gedi.issn2095-8676.2018.02.013
    [10]Rongbin XU, Guokai YUAN, Jinchao LIU, Tao CHEN. Analysis of Grouted Connection in Offshore Wind Turbine Jacket Foundation[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(3): 80-85. DOI: 10.16516/j.gedi.issn2095-8676.2015.03.016
  • Cited by

    Periodical cited type(5)

    1. 王金玺,陈珂,王洪庆,宋长智,张晓蕊. 海上风电吸力筒基础贯入分析. 内蒙古电力技术. 2025(02): 84-91 .
    2. 张平,高志康,张永飞,李平. 深水大容量吸力筒导管架风机基础设计. 船舶工程. 2024(S1): 160-165 .
    3. 杨吉新,项逍,宋晓婷,李志勇. 基于黏弹性边界的桩侧溶洞地震效应分析. 工程与建设. 2023(01): 328-332 .
    4. 高志康,张平,张永飞,周芳,李平. 海上风电吸力式导管架基础连接段加强形式及其应力数值分析. 水电与新能源. 2023(08): 66-69 .
    5. 徐成根,江海涛,孙德成. 全钢型负压筒式海上风电机组基础结构的监测参数预报. 太阳能学报. 2023(11): 350-360 .

    Other cited types(4)

Catalog

    Chaohe CHEN

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(13)  /  Tables(3)

    Article Metrics

    Article views (1076) PDF downloads (151) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return