• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue 4
Dec.  2021
Turn off MathJax
Article Contents

NI Daojun,XIAO Yaoyao.Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation[J].Southern Energy Construction,2021,08(04):26-31. doi:  10.16516/j.gedi.issn2095-8676.2021.04.004
Citation: NI Daojun,XIAO Yaoyao.Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation[J].Southern Energy Construction,2021,08(04):26-31. doi:  10.16516/j.gedi.issn2095-8676.2021.04.004

Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation

doi: 10.16516/j.gedi.issn2095-8676.2021.04.004
  • Received Date: 2021-10-18
  • Rev Recd Date: 2021-10-25
  • Publish Date: 2021-12-25
  •   Introduction  As the foundation of one-step transportation and installation technology, composite bucket foundation of offshore wind power generation has been widely used in the development of offshore wind power. The main research content of this paper is to ensure the stability of composite bucket foundation during the construction.  Method  Through the transport field experiment of one-step transport installation ship, the real-time monitoring of tower drum and blade lifting and towing process during the construction of Xiangshui 25# wind turbine in Jiangsu was carried out.  Result  The results show that the dip angle of composite bucket foundation was smaller in the process of tower drum and blade lifting; during towing, the interaction force between drums, the roll angle and the height of liquid seal in tubes all met the requirements.  Conclusion  The results show that the composite bucket foundation had good stability during the tower drum and blade lifting process. In the towing process, the transport ship was closely fitted with the composite bucket foundation, which can ensure the stability of the whole structure in the transportation process. Moreover, the composite bucket foundation can provide stable buoyancy in the process of towing.
  • [1] 闵巧玲. 复合筒型基础稳性及拖航运动特性分析 [D]. 天津: 天津大学, 2018.

    MINQ L. Analysis of stability and towing motion characteristics of composite cylinder foundation [D]. Tianjin: Tianjin University, 2018.
    [2] LIUX Q, ZHANGP Y, ZHAOM J, et al. Air-floating characteristics of large-diameter multi-bucket foundation for offshore wind turbines [J]. Energies, 2019, 12(21): 4108.
    [3] DINGH Y, LIUY G, ZHANGP Y, et al. Model tests on the bearing capacity of wide-shallow composite bucket foundations for offshore wind turbines in clay [J]. Ocean Engineering, 2015, 103(7): 114-122.
    [4] ZHANGP Y, HANY Q, DINGH Y, et al. Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines [J]. Ocean Engineering, 2015, 108(11): 769-777.
    [5] ZHANGP Y, DINGH Y, LEC H. Hydrodynamic motion of a large prestressed concrete bucket foundation for offshore wind turbines [J]. Journal of Renewable and Sustainable Energy, 2013, 5(6): 063126.
    [6] 刘宪庆. 气浮筒型基础拖航稳性和动力响应研究 [D]. 天津: 天津大学, 2012.

    LIUX Q. Study on stability and dynamic response of air buoy foundation towing [D]. Tianjin: Tianjin University, 2012.
    [7] 丁红岩, 韩彦青, 张浦阳, 等. 气压对海上风电一步式运输安装船稳性的影响 [J]. 天津大学学报(自然科学与工程技术版), 2017, 50(9): 915-920.

    DINGH Y, HANY Q, ZHANGP Y, et al. Journal of Tianjin University (Natural Science and Engineering), 2017, 50 (9) 915-920.
    [8] THIAGARAJANK P, MORRIS-THOMASM T, SPARGOA. Heave and pitch response of an offshore platform with air cushion support in shallow water [C]//Anon.Asme International Conference on Offshore Mechanics and Arctic Engineering, British Columbia, June 20-25, 2004. Canada: [s.n.], 2004: 817-823.
    [9] LEEC H, NEWMANJ N. Wave effects on large floating structures with air cushions [J]. Marine Structures, 2000, 13(4): 315-330.
    [10] 别社安, 时钟民, 王翎羽, 气浮结构的静浮态分析 [J]. 中国港湾建设, 2000(6): 18-23.

    BIES A, SHIZ M, WANGL Y. Static floating state analysis of air-floating structure [J]. China Harbour Construction, 2000 (6): 18-23.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(15)  / Tables(2)

Article Metrics

Article views(276) PDF downloads(79) Cited by()

Related

Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation

doi: 10.16516/j.gedi.issn2095-8676.2021.04.004

Abstract:   Introduction  As the foundation of one-step transportation and installation technology, composite bucket foundation of offshore wind power generation has been widely used in the development of offshore wind power. The main research content of this paper is to ensure the stability of composite bucket foundation during the construction.  Method  Through the transport field experiment of one-step transport installation ship, the real-time monitoring of tower drum and blade lifting and towing process during the construction of Xiangshui 25# wind turbine in Jiangsu was carried out.  Result  The results show that the dip angle of composite bucket foundation was smaller in the process of tower drum and blade lifting; during towing, the interaction force between drums, the roll angle and the height of liquid seal in tubes all met the requirements.  Conclusion  The results show that the composite bucket foundation had good stability during the tower drum and blade lifting process. In the towing process, the transport ship was closely fitted with the composite bucket foundation, which can ensure the stability of the whole structure in the transportation process. Moreover, the composite bucket foundation can provide stable buoyancy in the process of towing.

NI Daojun,XIAO Yaoyao.Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation[J].Southern Energy Construction,2021,08(04):26-31. doi:  10.16516/j.gedi.issn2095-8676.2021.04.004
Citation: NI Daojun,XIAO Yaoyao.Research on Towing Stability of Composite Bucket Foundation for Offshore Wind Power Generation[J].Southern Energy Construction,2021,08(04):26-31. doi:  10.16516/j.gedi.issn2095-8676.2021.04.004
  • OA:https://www.energychina.press/

    海上风电机组制造技术日渐成熟,制造成本和安装水深成为人们考虑的两个重要因素1-2。风电机组基础建造和安装的费用在总造价中占很大的比重,并且随着工作水域水深的增加,海上风电基础结构的制造和安装也面临着很大的困难,这同样会增加基础结构的造价3-5。大尺度复合筒型基础可以实现高效益、低成本的建造理念,包含设计、运输及安装等一系列完整的技术方案。复合筒型基础为宽浅式设计,顶板上接弧形过渡段6-7,如图1。该基础通过拖船进行拖航浮运,在安装及拖航过程中,为保证施工的安全可靠性,必须对复合筒型基础在安装以及拖航过程中的稳性进行检测研究。

    THIAGARAJAN通过模型试验与理论分析的方式对气浮结构在浅水中的运动响应做了对比,得出实验趋势与理论值相吻合,气垫的存在增加了浮体的纵摇响应,但是对垂荡响应影响很小的结论8;LEE研究了带有气垫的大型浮运结构的动力响应,导出了刚体运动和广义模态的运动方程9;别社安建立了分析气浮结构静稳性的理论方法,对气浮结构的小倾角稳性进行了分析10;刘宪庆通过对气浮结构的不同状态进行受力分析,提出了单个气浮结构进行分舱会增加浮稳性的作用机理1;闵巧玲通过对复合筒型基础拖航浮稳性的研究,得出复合筒型基础的纵摇固有周期、压载会随着基础吃水深度的增加而变大的结论6

    综上所述,复合筒型基础在安装及拖航过程中的稳性至关重要。因此,对江苏响水风电场25#机位复合筒型基础的安装与运输进行了检测。25#机位复合筒型基础与安装船绑扎连接后,在码头采用650 t履带吊依次吊装三节塔筒,于2017年6月8日上午9时启程离岸,经海上浮运至设计机位,于2017年6月12日晚间8点30分开始沉放作业。整个拖航过程持续约108 h。在这一过程中,对风机塔筒吊装时复合筒型基础倾角进行检测,对拖航过程中船筒间相互作用力、安装船倾角、复合筒型基础筒内液面进行监测。

  • 复合筒型基础通过一体化运输安装船进行运输。风电机组可在一体化运输安装船上进行吊装以及测试,该船船头、船尾呈凹型,便于安装复合筒型基础,船体中间则是桁架结构,保持安装风机塔筒运输过程中的稳定性,如图2。整体结构参数见表1

    Figure 2.  One-step transport installation ship

    参数数值参数数值
    船体长度/m103筒径/m30
    船体宽度/m51筒高/m12
    船体深度/m9过渡段高度/m20
    设计吃水/m6塔筒高度/m78.5
    船体吨位/t16 900塔筒重量/t207.0
    上槽直径/m25总重量/t2 700.0
    下槽直径/m37横摇固有周期/s8.5
    桁架高度/m62纵摇固有周期/s11.0
    垂荡固有周期/s6.7

    Table 1.  Overall structural parameters

  • 在塔筒顶端安装一个三向加速度传感器,以检测叶片吊装时基础的倾角;在复合筒型基础的上翼缘安装一个双轴倾斜仪,以监测结构运输过程中的横摇和纵摇角度;在七个舱室的顶部、船筒之间分别安装压力传感器,用来检测内部空气压力以及船筒间相互作用力;在拖航过程中,运输船中心安装加速度传感器,筒内安装雷达液位计,分别用来测拖航过程中船体的运动特性以及筒内液面高度。传感器具体安装布置方式见图3

    Figure 3.  Sensor layout

    Figure 3.  Sensor layout

    Figure 3.  Sensor layout

  • 风电整机塔筒的吊装是风电整机施工的重要环节之一,也是风电整机浮运之前的最后一个环节,风电整机吊装的稳定程度决定后续拖航过程中整机的稳定性、拖航是否能顺利进行,所以要对吊装过程中复合筒型基础的稳性进行监测。

    塔筒吊装施工在码头进行,采用650 t履带吊依此吊装三节塔筒以及叶片,吊装期间,对复合筒型基础的倾角进行检测。监测结果如图4

    Figure 4.  Inclination angle of composite cylinder foundation when lifting three tower cylinders and blades

    Figure 4.  Inclination angle of composite cylinder foundation when lifting three tower cylinders and blades

    Figure 4.  Inclination angle of composite cylinder foundation when lifting three tower cylinders and blades

    Figure 4.  Inclination angle of composite cylinder foundation when lifting three tower cylinders and blades

    从图中可以看出,风机塔筒及叶片吊装时,复合筒型基础呈现不规则摇摆,其中第二节塔筒吊装时复合筒型基础摇摆幅度最大,最大倾角达到了0.03°,而叶片吊装时复合筒型基础摇摆幅度最小,最大值也仅为0.012°。可见吊装的部件越大越重,复合筒型基础摇摆幅度也就越大。而三节塔筒与叶片吊装期间,复合筒型基础倾角始终小于0.04°,因此可以说明复合筒型基础在吊装过程中具有较好的稳定性。

  • 拖航过程是风电整机浮运的核心过程,在期间会遇到不同程度的波浪力等外荷载,从而影响运输船、复合筒型基础的稳定性,要保证风电整机的一体化运输,确保拖航过程中运输船,筒型基础紧密贴合不分离,运输船和筒型基础之间必须保持一定的作用力。船筒间相互作用是保证一体化运输的重要指标。

    25#复合筒型基础拖航时,根据拖航经验,采取500 t船筒间作用力作为控制标准。监测结果如图5

    Figure 5.  Interbarrel force during towing

    图5可以看出,在拖航过程中,船筒之间的作用力随着波浪的变化而变化。整个的时间历程中,船筒之间仍有490 t以上的结合力,说明船筒之间结合得足够紧密,且船筒间作用力波动不超过30 t,说明两者之间的接触稳定。

    综上,复合筒型基础一步式安装法能够满足拖航过程中船筒不脱开的要求,保证了一体化运输的稳定性。

  • 拖航过程中,风电整机的浮运特性也是研究的重点。不仅要保证复合筒型基础拖航过程中的稳定性,也要确保拖航期间运输船也具有相应的运动特性,上一节的分析可以看出,在拖航过程中,复合筒型基础与安装船之间始终保持500 t左右的相互作用力,因此可认为船筒运动同步。

    为了避免现场施工工况复杂的现象,通过控制航速,在不同时间测得不同风速,选取了三种不同工况,见表2。利用倾角仪对安装船倾角进行检测。监测结果见图6

    工况风速/(m·s-1航速/节
    工况一6.13.4
    工况二9.70.7
    工况三1.54.5

    Table 2.  Design condition table

    Figure 6.  Monitoring data of ship motion characteristics

    Figure 6.  Monitoring data of ship motion characteristics

    Figure 6.  Monitoring data of ship motion characteristics

    Figure 6.  Monitoring data of ship motion characteristics

    图6中可以看出,在拖航过程中,安装船横、纵摇角度随着波浪周期振荡,工况一下横摇角最大幅值为0.144°,纵摇角最大幅值为0.094°;工况二下横摇角最大幅值为0.161°,纵摇角最大幅值为0.248°;工况三下横摇角最大幅值为0.2°,纵摇角最大幅值为0.48°。风速和航速对安装船的横摇角度影响均不明显,而对纵摇角影响明显,其中,工况三相比工况一,风速减小到工况一的1/4,航速仅增大了32.3%,而安装船的纵摇角最大幅值增大了410.6%,可以推断航速的增大对船纵摇角的增大起着明显作用。三种工况相比而言,工况一的运输过程最为稳定,即适中的风速和适中的航速条件为理想拖航环境,风速、航速单一因素的增加均会导致运输过程稳性很大程度降低。安装船在三种工况下的摇摆角度始终不大于0.5°,而由于船筒运动同步,复合筒型基础也与安装船有着相同的倾角,说明复合筒型基础及安装船在拖航过程中具有较好的稳定性。

  • 复合筒型基础是一种气浮结构,具有自浮稳性的优点,在拖航过程中,筒内的液面是不断变化的。除了保证船筒的一体化运输和船筒的稳定性以外,要保证复合筒型基础提供比较稳定的浮力,这就必须保证复合筒型基础内部具有一定的液封高度。因此,对复合筒型基础的筒内液封高度的监测也至关重要。监测结果如图7

    Figure 7.  Liquid seal height in cylinder during tugging process of cylinder foundation

    图7可以看出,复合筒型基础在拖航过程中,筒内各个舱的液封高度不同,但是均随着波浪在原始液封高度附近呈现周期性变化,筒内液封高度始终大于250 cm,能够保证筒内气体不逸出。且筒内液面波动始终在10~20 cm以内,能够提供比较稳定的浮力,说明复合筒型基础在拖航过程中具有较好的稳定性。

  • 通过对塔筒吊装以及拖航过程中结构倾角、动力特性以及筒内液面高度监测结果的分析,得出以下结论:

    1)塔筒、叶片吊装过程中,复合筒型基础最大倾角小于0.04°,可以保证吊装过程中的稳定性。

    2)拖航过程中,船筒间作用力在初始作用力500 t左右摆动,且波动不大,船筒紧密贴合,而且船体横纵摇角度在三种不同工况下也能保证较好的稳定性,可以保证拖航过程中船体及复合筒型基础的整体稳定。

    3)拖航过程中,复合筒型基础7个舱室内液面均大于250 cm,且波动不大,可以保证在整个拖航过程中提供稳定的浮力。

    综上所述,复合筒型基础在吊装塔筒、叶片以及通过一体化运输安装船拖航工程中始终保持一个稳定的形态,这就为之后复合筒型基础的设计、施工提供了可靠性分析,同时,在同类型浮体的施工安装中也具有一定的参考价值。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return