Advanced Search
CHEN Jiahao, GAO Yifan, YIN Ziwei, et al. Integrated calculation and coupled dynamic analysis of a concrete semi-submersible floating wind turbine in offshore deep water area [J]. Southern energy construction, 2024, 11(2): 31-41. DOI: 10.16516/j.ceec.2024.2.03
Citation: CHEN Jiahao, GAO Yifan, YIN Ziwei, et al. Integrated calculation and coupled dynamic analysis of a concrete semi-submersible floating wind turbine in offshore deep water area [J]. Southern energy construction, 2024, 11(2): 31-41. DOI: 10.16516/j.ceec.2024.2.03

Integrated Calculation and Coupled Dynamic Analysis of a Concrete Semi-Submersible Floating Wind Turbine in Offshore Deep Water Area

More Information
  • Received Date: June 04, 2023
  • Revised Date: June 20, 2023
  • Accepted Date: June 25, 2023
  • Available Online: July 17, 2023
  •   Introduction  The research aims to explore the integrated calculation method of a 10 MW semi-submersible floating wind turbine, and analyze its coupled dynamic response characteristics in 40~50 m offshore deep water areas.
      Method  A 10 MW concrete semi-submersible floating wind turbine was taken as an example, and then numerical calculation was carried out by the integrated calculation method, and its coupled dynamic response under rated and survival conditions was statistically analyzed.
      Result  The horizontal motion of the platform is mainly affected by the wave force, wind loading and mooring stiffness. The maximum value of motion and mooring tension occur in the survival condition, and the heave motion is mainly affected by the wave, but the mean value of the pitch/roll motion is mainly affected by the wind loading, all of which meet the design specification.
      Conclusion  The integrated calculation method better considers the coupled dynamic behavior of floating wind turbines. Due to the limitation of water depth, the optimization of horizontal motion and mooring nonlinearity of offshore floating wind turbines is more important in offshore deep water areas, and the extreme response mainly occurs in survival conditions. The above conclusions provide an important reference for the research and design of the floating offshore wind turbines in offshore deep water area.
  • [1]
    Global Wind Energy Council. Global wind report 2023 [R]. Brussels, Belgium: Global Wind Energy Council, 2023.
    [2]
    王诗超, 刘嘉畅, 刘展志, 等. 海上风电产业现状及未来发展分析 [J]. 南方能源建设, 2023, 10(4): 103-112. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.010.

    WANG S C, LIU J C, LIU Z Z, et al. Analysis of current situation and future development of offshore wind power industry [J]. Southern energy construction, 2023, 10(4): 103-112. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.010.
    [3]
    CRUZ J, ATCHESON M. Floating offshore wind energy: the next generation of wind energy [M]. Cham: Springer, 2016. DOI: 10.1007/978-3-319-29398-1.
    [4]
    陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展 [J]. 南方能源建设, 2020, 7(1): 8-20. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.002.

    CHEN J H, PEI A G, MA Z R, et al. A review of the key technologies for floating offshore wind turbines [J]. Southern energy construction, 2020, 7(1): 8-20. DOI: 10.16516/j.gedi.issn2095-8676.2020.01.002.
    [5]
    CORDLE A, JONKMAN J. State of the art in floating wind turbine design tools [R]. Golden: National Renewable Energy Laboratory, 2011.
    [6]
    NIELSEN F G, HANSON T D, SKAARE B. Integrated dynamic analysis of floating offshore wind turbines [C]//25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006. Hamburg, Germany: ASME, 2006: 671-679. DOI: 10.1115/OMAE2006-92291.
    [7]
    THOMSEN J B, BERGUA R, JONKMAN J, et al. Modeling the TetraSpar floating offshore wind turbine foundation as a flexible structure in OrcaFlex and OpenFAST [J]. Energies, 2021, 14(23): 7866. DOI: 10.3390/en14237866.
    [8]
    BLONDEL F, BOISARD R, MILEKOVIC M, et al. Validation and comparison of aerodynamic modelling approaches for wind turbines [J]. Journal of physics:conference series, 2016, 753(2): 022029. DOI: 10.1088/1742-6596/753/2/022029.
    [9]
    MYHR A, HANSEN F E, MOELLER U, et al. A comparison of existing and conceptual designs for floating wind turbines [C]//Renewable Energy Research Conference 2010, July 6-August 6, 2010.
    [10]
    JONKMAN J M. Dynamics of offshore floating wind turbines—model development and verification [J]. Wind energy, 2009, 12(5): 459-492. DOI: 10.1002/we.347.
    [11]
    COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data [J]. Journal of renewable and sustainable energy, 2013, 5(2): 023116. DOI: 10.1063/1.4796197.
    [12]
    DNV. Wind turbine design software - Bladed [EB/OL]. [2023-06-05]. https://www.dnv.com/services/wind-turbine-design-software-bladed-3775.
    [13]
    LARSEN T J, HANSEN A M. How 2 HAWC2, the user's manual [R]. Roskilde, Denmark: Riso National Laboratory, 2007.
    [14]
    MATHA D, SCHLIPF M, CORDLE A, et al. Challenges in simulation of aerodynamics, hydrodynamics, and mooring-line dynamics of floating offshore wind turbines [R]. Golden: National Renewable Energy Laboratory, 2011.
    [15]
    WITHEE J W. Fully coupled dynamic analysis of a floating wind turbine system [D]. Cambridge: Massachusetts Institute of Technology, 2004.
    [16]
    YAO Y S, NING D Z, DENG S J, et al. Hydrodynamic investigation on floating offshore wind turbine platform integrated with porous shell [J]. Energies, 2023, 16(11): 4376. DOI: 10.3390/en16114376.
    [17]
    CHEN J H, HU Z Q, LIU G L, et al. Coupled aero-hydro-servo-elastic methods for floating wind turbines [J]. Renewable energy, 2019, 130: 139-153. DOI: 10.1016/j.renene.2018.06.060.
    [18]
    陈嘉豪, 刘格梁, 胡志强. 海上浮式风机时域耦合程序原理及其验证 [J]. 上海交通大学学报, 2019, 53(12): 1440-1449. DOI: 10.16183/j.cnki.jsjtu.2019.12.006.

    CHEN J H, LIU G L, HU Z Q. Development and validation of a time-domain coupling simulation code for floating offshore wind turbines [J]. Journal of Shanghai jiaotong university, 2019, 53(12): 1440-1449. DOI: 10.16183/j.cnki.jsjtu.2019.12.006.
    [19]
    LI Y W, PAIK K J, XING T, et al. Dynamic overset CFD simulations of wind turbine aerodynamics [J]. Renewable energy, 2012, 37(1): 285-298. DOI: 10.1016/j.renene.2011.06.029.
    [20]
    TRAN T, KIM D, SONG J. Computational fluid dynamic analysis of a floating offshore wind turbine experiencing platform pitching motion [J]. Energies, 2014, 7(8): 5011-5026. DOI: 10.3390/en7085011.
    [21]
    PEGALAJAR-JURADO A, BREDMOSE H, BORG M, et al. State-of-the-art model for the LIFES50+ OO-Star wind floater semi 10MW floating wind turbine [J]. Journal of physics: conference series, 2018, 1104: 012024. DOI: 10.1088/1742-6596/1104/1/012024.
    [22]
    BAK C, ZAHLE F, BITSCHE R, et al. The DTU 10-MW reference wind turbine [R]. Fredericia, Denmark: DTU, 2013.
    [23]
    李旭, 肖龙飞, 魏汉迪, 等. 系泊缆破断对半潜式平台水动力性能影响的试验研究 [J]. 海洋工程装备与技术, 2023, 10(1): 48-56.

    LI X, XIAO L F, WEI H D, et al. Experimental study on the influence of mooring line breaking on the hydrodynamic performance of semi-submersible platform [J]. Ocean engineering equipment and technology, 2023, 10(1): 48-56.
    [24]
    张会良, 肖龙飞, 徐秀龙. 深水圆筒型钻井平台张紧式系泊系统设计 [J]. 海洋工程, 2021, 39(6): 10-18. DOI: 10.16483/j.issn.1005-9865.2021.06.002.

    ZHANG H L, XIAO L F, XU X L. Design of taut mooring system for a deep water cylindrical drilling platform [J]. The ocean engineering, 2021, 39(6): 10-18. DOI: 10.16483/j.issn.1005-9865.2021.06.002.
    [25]
    DNV. Standard for classification of wind turbine installation units: DNV—OS—J301 [S]. Oslo, Norway: DNV, 2011.
  • Related Articles

    [1]LAN Haochen, LU Bingfu, LI Zhongyi, HUANG Dan, LI Yong, ZHAO Jinbiao. Analysis of the Limited Capacity of Wind Turbine Icing in Extreme Cold Wave Weather Process[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 26-35. DOI: 10.16516/j.ceec.2024-358
    [2]MENG Dan, CHEN Zhenghong, XU Yang, ZENG Peng, WANG Ming, CUI Yang, XU Peihua. The Impact of Extreme Weather on the Entire Process of Wind Power Development and Response Strategies[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(2): 1-14. DOI: 10.16516/j.ceec.2024-334
    [3]CAO Chen, WANG Zengping. Reflections on the Impact of Extreme Weather on New Power Systems and Countermeasures[J]. SOUTHERN ENERGY CONSTRUCTION, 2025, 12(1): 43-57. DOI: 10.16516/j.ceec.2024-367
    [4]ZHANG Rui, ZHANG Ping, GAO Zhikang. Numerical Simulation Analysis of Hydrodynamic Response and Stress Characteristics of Large-Capacity Floating Wind Turbine Foundations[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-417
    [5]ZHAO Yebin, REN Jianyu, LE Conghuan. Effect of Wind Loads on Towing Response of Submersible Floating OWT[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(1): 176-184. DOI: 10.16516/j.ceec.2024.1.18
    [6]GUO Jiangtao, CHEN Shuo, ZENG Ruibin, HUANG Liling, ZHANG Yifeng. Research for Inertia Response and Primary Frequency Regulation Ability of Wind Turbine[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(4): 82-90. DOI: 10.16516/j.gedi.issn2095-8676.2023.04.008
    [7]LIN Wangyong, CHEN Yin, ZHANG Hua. Wind-Induced Response Analysis of 1 000 kV Lattice Independent Lightning Protection Tower[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(S2): 68-73. DOI: 10.16516/j.gedi.issn2095-8676.2022.S2.011
    [8]Senlin LIU, Zhong WANG, Qichun CHEN, Guangbing ZHOU, Xiao WANG, Di SUN. Dynamic Characteristics Analysis of H-class Gas Turbines Foundation Based on Response Surface Methodology[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(2): 17-24. DOI: 10.16516/j.gedi.issn2095-8676.2021.02.003
    [9]Xiangsheng LEI, Zidong WU, Ping DONG, Hongzhou JIA. Method of Demand Response Potential Assessment Based on  Two-stage Cluster Analysis[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S2): 1-10. DOI: 10.16516/j.gedi.issn2095-8676.2020.S2.001
    [10]Rongpeng WANG, Ganjun WANG, Yijiang Wu. Research on Dynamic Responses of a Transmission Tower with Angle Section Members Under Lateral Wind Loadings[J]. SOUTHERN ENERGY CONSTRUCTION, 2015, 2(1): 88-91. DOI: 10.16516/j.gedi.issn2095-8676.2015.01.017
  • Cited by

    Periodical cited type(4)

    1. 黄玉佩,金涛,黄建武,林葵庚,周益君,陶涌,陈莉,杨敏冬. 漂浮式风机合成纤维系泊系统优化分析. 能源工程. 2025(01): 10-17 .
    2. 庄杰敏,高一帆,陈嘉豪,任灏. 海上漂浮式风机系泊阻尼试验研究. 特种结构. 2025(01): 33-38 .
    3. 许传博,李沛遥,张文座,李庆伟,韦艳. 面向电-碳-氢-醇协同的海上综合能源岛规划. 南方能源建设. 2025(03): 52-66 . 本站查看
    4. 邓石,宋安科,杨小龙,张广磊,刘旭平,程正顺. “海油观澜号”浮式风电系统水动力特性与上浪载荷研究. 中国海上油气. 2024(06): 128-138 .

    Other cited types(0)

Catalog

    QU Xiaoqi, quxiaoqi1234@126.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (1410) PDF downloads (266) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return