Advanced Search
XU Ting, HOU Jingzheng, ZHU Yuzhang, LIU Chengwei, ZHU Zhide, LIU Yuchu. Application and Economic Research of Deep Peak Shaving System for Coal-fired Units Coupling Non-afterburning Compressed Air Energy Storage Technology[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-364
Citation: XU Ting, HOU Jingzheng, ZHU Yuzhang, LIU Chengwei, ZHU Zhide, LIU Yuchu. Application and Economic Research of Deep Peak Shaving System for Coal-fired Units Coupling Non-afterburning Compressed Air Energy Storage Technology[J]. SOUTHERN ENERGY CONSTRUCTION. DOI: 10.16516/j.ceec.2024-364

Application and Economic Research of Deep Peak Shaving System for Coal-fired Units Coupling Non-afterburning Compressed Air Energy Storage Technology

More Information
  • Received Date: October 24, 2024
  • Revised Date: October 29, 2024
  • Accepted Date: October 29, 2024
  •   Introduction  In order to improve the deep peak shaving ability of coal-fired units, a deep peak shaving system for coal-fired units coupling non-afterburning compressed air energy storage is proposed in this paper.
      Method  The system stored electric energy by compressing air during the low load period of the power grid to reduce the external power supply, and released the electric energy, stored by compressing air, during the peak load period of the power grid to increase the power supply.
      Result  Taking a 2×350 MW supercritical primary intermediate reheat coal-fired unit as an example, the calculated internal rate of return on project capital is 7.45%, indicating that the system has a certain level of economic viability.
      Conclusion  At this stage, coal-fired units coupling non-afterburning compressed air energy storage may have some disadvantages in terms of initial investment, and this scheme can significantly improve the bi-directional peak shaving ability of coal-fired units. Moreover, it does not require modifications to the existing equipment of the units, thus avoiding adverse effects on their operation. It has a certain application prospect in the field of deep peak shaving of coal-fired units.
  • [1]
    黄畅, 张攀, 王卫良, 等. 燃煤发电产业升级支撑我国节能减排与碳中和国家战略 [J]. 热力发电, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004.

    HUANG C, ZHANG P, WANG W L, et al. The upgradation of coal-fired power generation industry supports China's energy conservation, emission reduction and carbon neutrality [J]. Thermal power generation, 2021, 50(4): 1-6. DOI: 10.19666/j.rlfd.202101004.
    [2]
    袁照威, 杨易凡. 压缩空气储能技术研究现状及发展趋势 [J]. 南方能源建设, 2024, 11(2): 146-153. DOI: 10.16516/j.ceec.2024.2.14.

    YUAN Z W, YANG Y F. Research status and development trend of compressed air energy storage technology [J]. Southern energy construction, 2024, 11(2): 146-153. DOI: 10.16516/j.ceec.2024.2.14.
    [3]
    冀帅宇, 段立强, 王远慧, 等. 典型燃煤机组灵活调峰策略及性能研究 [J]. 热力发电, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd.202305092.

    JI S Y, DUAN L Q, WANG Y H, et al. Research on flexible peak load regulation strategy and performance of typical coal-fired units [J]. Thermal power generation, 2023, 52(9): 94-103. DOI: 10.19666/j.rlfd.202305092.
    [4]
    黎永华. 结合储能的并网光伏发电对电网的调峰作用分析 [D]. 北京: 华北电力大学, 2012. DOI: 10.7666/d.y2140252.

    LI Y H. Analysis on peak regulating of the grid-connected photovoltaic power generation with energy storage [D]. Beijing: North China Electric Power University, 2012. DOI: 10.7666/d.y2140252.
    [5]
    王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析 [J]. 南方能源建设, 2017, 4(1): 18-24. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.003.

    WANG W, XU J, ZHAO X, et al. Analysis on peak load regulation status quo for coal-fired power plants in China [J]. Southern energy construction, 2017, 4(1): 18-24. DOI: 10.16516/j.gedi.issn2095-8676.2017.01.003.
    [6]
    张磊. 燃煤机组深度调峰问题研究 [J]. 湖南文理学院学报(自然科学版), 2024, 36(3): 77-83. DOI: 10.3969/j.issn.1672-6146.2024.03.013.

    ZHANG L. Research on deep peak shaving of coal-fired units [J]. Journal of Hunan university of arts and science (science and technology), 2024, 36(3): 77-83. DOI: 10.3969/j.issn.1672-6146.2024.03.013.
    [7]
    童家麟, 吴瑞康, 茅建波, 等. 燃煤机组深度调峰瓶颈改善及耦合调峰技术研究 [J]. 综合智慧能源, 2022, 44(4): 43-50. DOI: 10.3969/j.issn.2097-0706.2022.04.006.

    TONG J L, WU R K, MAO J B, et al. Improvement of deep peak regulation and comprehensive peak shaving technologies for coal-fired units [J]. Integrated intelligent energy, 2022, 44(4): 43-50. DOI: 10.3969/j.issn.2097-0706.2022.04.006.
    [8]
    路雪晴. 火电耦合汽驱压缩空气储能系统优化研究与调峰性能分析 [D]. 济南: 山东大学, 2023. DOI: 10.27272/d.cnki.gshdu.2023.002268.

    LU X Q. Optimization research and peak shaving performance analysis of coal power coupling steam-driven compressed air energy storage system [D]. Jinan: Shandong University, 2023. DOI: 10.27272/d.cnki.gshdu.2023.002268.
    [9]
    李斌, 陈吉玲, 李晨昕, 等. 压缩空气储能系统与火电机组的耦合方案研究 [J]. 动力工程学报, 2021, 41(3): 244-250. DOI: 10.19805/j.cnki.jcspe.2021.03.011.

    LI B, CHEN J L, LI C X, et al. Research on coupling schemes of a compressed air energy storage system and thermal power unit [J]. Journal of Chinese society of power engineering, 2021, 41(3): 244-250. DOI: 10.19805/j.cnki.jcspe.2021.03.011.
    [10]
    李佳佳, 李兴朔, 周国文, 等. 先进储能型燃煤热电联产系统热力特性及灵活性分析 [J]. 动力工程学报, 2023, 43(2): 205-213. DOI: 10.19805/j.cnki.jcspe.2023.02.011.

    LI J J, LI X S, ZHOU G W, et al. Thermodynamics and flexibility analysis of a novel coal-fired CHP-CAES system [J]. Journal of Chinese society of power engineering, 2023, 43(2): 205-213. DOI: 10.19805/j.cnki.jcspe.2023.02.011.
    [11]
    中国电力工程顾问集团中南电力设计院有限公司, 中能建数字科技集团有限公司, 湖北楚韵储能科技有限责任公司. 一种基于先进压缩空气储能的燃煤机组深度调峰系统: CN221169682U [P]. 2024-06-18.

    Central Southern China Electric Power Design Institute Co., Ltd. of China Power Engineering Group, China Energy Digital Technology Group Co., Ltd., Hubei Chuyun Energy Storage Technology Co., Ltd. Coal-fired unit deep peak regulation system based on advanced compressed air energy storage: CN221169682U [P]. 2024-06-18.
    [12]
    孟之绪. 考虑系统灵活性的综合资源战略规划模型及应用研究 [D]. 北京: 华北电力大学, 2022. DOI: 10.27140/d.cnki.ghbbu.2022.001249.

    MENG Z X. Integrated resource strategic planning model considering system flexibility and application research [D]. Beijing: North China Electric Power University, 2022. DOI: 10.27140/d.cnki.ghbbu.2022.001249.
    [13]
    张玮灵, 古含, 章超, 等. 压缩空气储能技术经济特点及发展趋势 [J]. 储能科学与技术, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645.

    ZHANG W L, GU H, ZHANG C, et al. Technical economic characteristics and development trends of compressed air energy storage [J]. Energy storage science and technology, 2023, 12(4): 1295-1301. DOI: 10.19799/j.cnki.2095-4239.2022.0645.
    [14]
    周信华, 郑祯晨, 胡远庆. 抽汽熔盐蓄热技术在煤电灵活性改造中的应用研究 [J]. 科学技术创新, 2023(22): 53-56. DOI: 10.3969/j.issn.1673-1328.2023.22.014.

    ZHOU X H, ZHENG Z C, HU Y Q. Application research of steam extraction molten salt heat storage technology in coal-fired power generation flexibility transformation [J]. Scientific and technological innovation, 2023(22): 53-56. DOI: 10.3969/j.issn.1673-1328.2023.22.014.
    [15]
    中国电力企业联合会. 电力储能基本术语: DL/T 2528—2022 [S]. 北京: 中国电力出版社, 2007.

    China Electricity Council. Basic terminology of electrical energy storage: DL/T 2528—2022 [S]. Beijing: China Electric Power Press, 2007.
    [16]
    王秋彬. 基于多因素非线性敏感分析的工业项目评估模型 [D]. 武汉: 华中科技大学, 2005. DOI: 10.7666/d.d009486.

    WANG Q B. Hereby it establishes a model for analyzing sensitive of nonlinear and multifactor of investment project [D]. Wuhan: Huazhong University of Science and Technology, 2005. DOI: 10.7666/d.d009486.
    [17]
    秦帆, 刘聪. 储能系统商业模式及峰谷差运行工况的经济性评价研究 [J]. 电气技术与经济, 2023(10): 66-69. DOI: 10.3969/j.issn.1673-8845.2023.10.020.

    QIN F, LIU C. Research on the economic evaluation of business models and peak valley operating conditions of energy storage systems [J]. Electrical equipment and economy, 2023(10): 66-69. DOI: 10.3969/j.issn.1673-8845.2023.10.020.
    [18]
    电力规划设计总院. 火力发电工程经济评价导则: DL/T 5435—2019 [S]. 北京: 中国计划出版社, 2019.

    China Electric Power Planning & Engineering Institute. Guidelines for economic evaluation of fossil-fired power plant: DL/T 5435—2019 [S]. Beijing: China Planning Press, 2019.
    [19]
    刘笑驰, 梅生伟, 丁若晨, 等. 压缩空气储能工程现状、发展趋势及应用展望 [J]. 电力自动化设备, 2023, 43(10): 38-47, 102. DOI: 10.16081/j.epae.202309005.

    LIU X C, MEI S W, DING R C, et al. Current situation, development trend and application prospect of compressed air energy storage engineering projects [J]. Electric power automation equipment, 2023, 43(10): 38-47, 102. DOI: 10.16081/j.epae.202309005.
    [20]
    杨雪雯, 任灏, 廖泽球, 等. 压缩空气储能地下人工洞室研究现状与展望 [J]. 南方能源建设, 2024, 11(4): 54-64. DOI: 10.16516/j.ceec.2024.4.06.

    YANG X W, REN H, LIAO Z Q, et al. Research status and prospect of underground artificial rock caverns for compressed air energy storage [J]. Southern energy construction, 2024, 11(4): 54-64. DOI: 10.16516/j.ceec.2024.4.06.
    [21]
    彭威, 利奕年, 商浩亮, 等. 压缩空气储能电站中的老井锻铣封堵技术研究和应用 [J]. 电力勘测设计, 2024(6): 61-65. DOI: 10.13500/j.dlkcsj.issn1671-9913.2024.06.013.

    PENG W, LI Y N, SHANG H L, et al. Research and application of old well sealing technology in compressed air energy storage power station [J]. Electric power survey & design, 2024(6): 61-65. DOI: 10.13500/j.dlkcsj.issn1671-9913.2024.06.013.
  • Related Articles

    [1]LIANG Xi, YU Xiaojie, XIA Changyou, LIU Muxin, GAO Zhihao. Assessment of the Climate Benefits and Economic Feasibility of Carbon Dioxide Utilization Pathways[J]. SOUTHERN ENERGY CONSTRUCTION, 2024, 11(5): 1-14. DOI: 10.16516/j.ceec.2024.5.01
    [2]WANG Fan, LI Binsi, XIA Tongling, PENG Min, WANG Shaoyong. Economic Research on Energy Storage Auxiliary Frequency Regulation of Lithium Iron Phosphate Battery for 2 × 600 MW Coal-fired Unit in Guangdong[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(6): 71-77. DOI: 10.16516/j.gedi.issn2095-8676.2023.06.008
    [3]ZHU Junhui. Analysis of Power Generation Technology and Economy on the Integration of Seawater Pump & Storage and Offshore PV[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 11-17. DOI: 10.16516/j.gedi.issn2095-8676.2023.02.002
    [4]XU Weixuan. Technical and Economic Study on Heating Transformation Scheme of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 88-93. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.010
    [5]GUO Chenghao, XIE Zishuo, WANG Jinxing, LIU Chang. Research on Operation Strategy of the Application of Dual Energy Storage Coupled with Coal-Fired Units in New Energy Power System[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 62-71. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.007
    [6]WEI Houjun, XIE Yan, SUN Yakun, HAN Yuxin, SOMG Minhang. Emission Characteristics and Control Technology of Flue Gas Pollutants During Peak Regulation of Coal-Fired Units[J]. SOUTHERN ENERGY CONSTRUCTION, 2022, 9(3): 50-61. DOI: 10.16516/j.gedi.issn2095-8676.2022.03.006
    [7]Xiaotian GAO, Kexin ZHENG, Chunrong CAI, Yongchun FAN, Jun KUANG. Research on Economy of Hydrogen Energy Storage for Nuclear Power Peak Shaving[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(4): 1-8. DOI: 10.16516/j.gedi.issn2095-8676.2021.04.001
    [8]Yibo MA, Xinping LIU. The Effect of Terminal Temperature Difference of Heater in a 660 MW Unit on Heat Economy[J]. SOUTHERN ENERGY CONSTRUCTION, 2021, 8(1): 93-99. DOI: 10.16516/j.gedi.issn2095-8676.2021.01.014
    [9]Xiaodan MIAO, Zhu ZHU, ✉. Economic Analysis of Nuclear Power in Fujian Province and Preliminary Discussion on “Nuclear Power Plant-pumped Storage Power Plant” Combined Operation[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(S1): 93-96. DOI: 10.16516/j.gedi.issn2095-8676.2020.S1.018
    [10]Zikai LU, Xianghao JIAN, Minghan ZHANG. Reliability and Economy Assessment of Multi-terminal Flexible DC Distribution Network[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(4): 67-74. DOI: 10.16516/j.gedi.issn2095-8676.2020.04.010

Catalog

    LIU Yuchu

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (186) PDF downloads (23) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return