-
传统的烟气成分检测方法为直接接触式测量方法,测量原理基本是根据单一烟气成分的物理化学反应特征与该气体浓度的关系推算该成分的含量。例如,氧化锆管测量氧浓度的原理就是利用氧化锆探头反应电极的电势差与氧气浓度的关系得到锅炉烟气中的含氧量[1]。类似的测量装置都摆脱不了接触式测量方法误差大、易损坏等缺点。
近年来,激光测量技术作为一种新型的非接触式测量[2]技术得到迅速发展,国内外已经有相应的研究成果问世并成功应用于电厂、化工厂等大型工业生产领域,从现场的应用效果来看,这种非接触式测量技术具有精度高,易安装和维护等优势。Martz S.等人[3]针对激光测量在奥塔姆瓦电站的应用做了详细的调查和研究,发现电站锅炉的燃烧效率较以前提高了三个百分点,并有效控制了炉膛内煤灰结渣,管壁超温等问题。中国科学院力学研究所的李飞等人[4]采用可调谐二极管激光器吸收光谱技术建立了温度和H2O浓度的测量系统;胡慧铺等人[5]开发了一套基于HITRAN数据库的甲烷浓度测量装置。
基于激光测量技术的近期研究进展和最新应用成果,本文讨论了光吸收度与气体浓度的定量关系以及可调谐二极管激光器吸收光谱技术在非均匀介质环境中的测量原理。最后,从锅炉现场测量的结果中发现激光测量技术具有灵敏度高,准确,灵活方便等优点,对提高锅炉效率、低碳排放以及降低氮氧化物等有害气体的排放具有意义。
HTML
-
物质对光吸收的定量关系很早就得到科学家的研究。18世纪末的德国物理学家朗伯(Lambert)和19世纪初的光学科学家奥古斯特·比尔(August Beer)都发现了物质对光的吸收与吸光介质的尺寸以及浓度有一定的关系。近现代光学物理实验验证了两者的推论,形成了一个光学基本定律,简称朗伯-比尔定律[6]。该定律的核心指出任何吸光物质对单色光的吸收程度的大小与该物质的浓度和光程有关,而与单色光的入射强度无关。
应用微积分的原理可推导出光强度与介质浓度的定量关系。如图1所示,在吸光光程为L的空间中将垂直入射光光束分割成无限多个厚度为dl的小薄片,每个薄层上含有吸光质点的个数为dn,且每个吸光质点的平均面积为s。则在该小薄片上所有吸光质点的总面积为dn·s。
如果一束入射光强度为I的激光束垂直射入到该小薄片dl上,激光强度被吸光质点吸收后,强度减少了dI。由光吸收的微观原理,dI与薄层中吸光质点的总截面积dn·s以及入射光的强度I0成正比[7],关系式如下:
((1)) 式中:dI前加上负号的目的是表示激光强度随物质的吸收而降低;k1为比例系数。
假设在浓度为c的吸光物质进行实验,则小薄片dl中所以的吸光质点dn可以转化为用下式表示:
((2)) 式中:NA为阿伏伽德罗常数,值为6.02×1023;S为激光垂直入射的横截面积。
将式(2)带入式(1),令k2=k1·NA·s·S,经整理得:
((3)) 对式(3)进行积分:
((4)) 可得:
((5)) ((6)) 式中:I0为激光的入射强度;It为透射强度;lg(I0/It)定义为吸光度A,1/(mol×cm-2);K为吸光系数,是浓度测量中重点研究的一个光学参数。
以上就是朗伯-比尔定律(Beer-Lambert)定量计算光吸收的原理表达式。被测介质的浓度c(mol/L)可以通过式6得到:
((7)) 每种气体分子都有自己独特的光谱吸收特性,就像每个人的指纹一样。对于激光这种单色光,每种气体分子对激光的吸收的强弱在波长λ(cm)上表现不一致,将吸收最强的定义为分子的最大吸收波长λmax。在最大吸收波长的窄段内被测分子的吸收强度最大,测量的灵敏度和准确性就越高。HITRAN数据库[8]将会帮助我们选择出最佳的激光测量波长。
在电站锅炉多灰尘的烟气环境中,激光会受到灰尘的散射作用,激光透射光强度会减小,气体分子的吸光度A不容易得到,可调谐二极管激光吸收光谱技术[9,10,11,12]的发明解决了这一难题,它的测量原理是通过调谐同一激光器的波长使扫描覆盖某气体分子吸收和非吸收波段,进而得到激光测量路径上的吸光度A,计算出测量气体的体积分数。
TDLAS技术利用被测气体分子光谱吸收的”选频”特性实现对被测气体浓度的测量。TDLAS技术的工作原理为:通过对二极管激光器的输入电流进行控制,激光器的输出激光波长会随着输入电流的变化而改变,激光束穿入被测气体后,获取待测气体在一个完整周期内的吸收光谱曲线和扣除待测气体部分的背景谱线,对比两谱线的强度可以得出气体的体积分数[13]。应用TDLAS技术在一定范围内波长可调的特点,可以同时测量锅炉尾部烟气中多种气体的体积分数,比如氧气、一氧化碳、一氧化氮和水等。
-
以国内某电厂引进的美国佐炉科技公司ZoloBOSS®燃烧监控系统[14]在电站锅炉尾部烟气成分检测中的应用为例,分析激光在锅炉尾部烟气含氧量,一氧化碳和氮氧化物的质量浓度测量上的优势以及应用前景。
图2是激光测量仪器在锅炉尾部炉墙上的实物安装图。激光测量设备一般成对平行安装在锅炉尾部的同一截面上,多对激光器构成一个测量网格,如图3所示。每个激光器仅需要在炉墙开4 cm×4 cm的孔即可,有些锅炉还在锅炉主燃烧区安装多条激光测量路径,目的是测量燃烧区域的重要参数。
-
通过连续采集2 h内某条激光测量路径上的氧气,一氧化碳和一氧化氮的体积分数变化,得到图4所示的三组浓度变化趋势图。
由图4激光测量路径P3上的氧气体积分数,一氧化碳质量浓度和一氧化氮体积分数平均值的变化趋势可以看出,激光测量技术具有精度高,实时性强,并可以连续无接触的测量。
从夜间23点到凌晨2点以后的这一时间段,机组负荷下降的很快,这会导致炉内燃烧状态发生巨大变化,给煤量的减少不能及时跟随负荷的降低,热量得不到有效转换,烟气出口的氧气,一氧化碳和一氧化氮体积分数均会攀升,热力工况的变化可以从锅炉尾部烟气成分的激光测量结果中直观地反映,协助运行人员及时调节锅炉的风煤比例,降低热损失和有害气体的排放。
锅炉尾部激光测量网络由前后6条和左右6条测量路径构成,通过一定的二维场信息重建技术,可以得到烟道横截面上的烟气成分的场分布信息,图5为氧气含量的场分布信息。可以发现,烟道横截面上氧气含量较高区域分布在烟道的左侧,可以推断是由于左侧空气预热器漏气程度高所导致。
2.1 测量结果与分析
-
激光测量技术以HITRAN数据库为测量辅助工具,利用光吸收的朗伯-比尔定律可得出气体分子的浓度值,测量原理简单,计算量少,分子光谱吸收特性具有唯一性,提高了测量的抗干扰性。从电厂实际测量结果可以得出,激光光谱测量技术具有精度高,可测的气体种类多,安装和维护方便等优势,适应于粉尘,烟雾等恶劣环境的气体浓度测量。可见,激光测量技术在电力、钢铁等工业生产,化工有害气体检测等领域具有很好的应用前景。