• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 6 Issue 4
Jul.  2020
Turn off MathJax
Article Contents

HUANG Wenhe, HAO Di, ZHONG Xianglan. Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 106-112. doi: 10.16516/j.gedi.issn2095-8676.2019.04.017
Citation: HUANG Wenhe, HAO Di, ZHONG Xianglan. Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 106-112. doi: 10.16516/j.gedi.issn2095-8676.2019.04.017

Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2019.04.017
  • Received Date: 2019-04-03
  • Rev Recd Date: 2019-05-30
  • Publish Date: 2020-07-11
  •   [Introduction]  In the coastal thermal power plant, the unit circulating cooling water system usually adopts the secondary circulation way, which needs to transfer water from the seaside to the front pool of the circulating pump house through the open water intake channel. An inverted trapezoidal section is generally used in the open water intake channel, while a rectangular section is generally used in the front pool of the circulating pump house. Therefore, the connection between the two requires an itd, which is connected from an inverted trapezoidal section to a rectangular section.  [Method]  In the engineering of the past, and flow in open channel water pump room link transition section of the former pool there are many kinds of forms, the most commonly used were divided into two kinds, one kind was through the connection of reinforced concrete box culvert, another was by reinforced concrete buttressed retaining wall connection, the former for wave conditions demand was not high, the latter for demanding wave conditions.  [Result]  Combined with the actual situation of the project site, a special curved surface transition scheme was innovatively proposed to connect the open water intake canal with the front pool of the pump house, and solve the connection difficulties and construction complexity of the transition section between the open water intake canal and the front pool of the pump house. This kind of special structure can not only give full play to the function of gravity retaining wall depending on backfilling soil and its own gravity resistance to sliding, but also reduce the occupied area and greatly reduce the project cost.  [Conclusion]  The engineering practice proves that this new type of curved surface transition section not only satisfies the actual use function of the site, but also saves the cost of the project and facilitates the construction.
  • [1] 中华人民共和国水利行业标准化协会. 水工挡土墙设计规范:SL 379—2007 [S]. 北京:中国水利水电出版社,2007.

    Water Conservancy Industry Standardization Association of the People′s Republic of China. Design specification for hydraulic retaining wall: SL 379—2007 [S]. Beijing:China Water Resources and Hydropower Press,2007.
    [2] 中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范:GB 50330—2013 [S]. 北京:中国建筑工业出版社,2013.

    Ministry of Housing and Urban-rural Development of the People′s Republic of China. Technical specification for construction slope engineering:GB 50330—2013 [S]. Beijing:China Building Industry Press,2013.
    [3] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007—2011 [S]. 北京:中国建筑工业出版社,2011.

    Ministry of Housing and Urban-rural Development of the People′s Republic of China. Code for design of building foundation:GB 50007—2011 [S]. Beijing:China Building Industry Press,2011.
    [4] 宋军涛. 锚索式肋柱挡土墙在永久边坡支护中的应用 [J]. 应用与实践,2017(5):239.

    SONG J T. Application of anchor cable ribbed retaining wall in permanent slope support [J]. Application and Practice,2017(5):239.
    [5] 白永生. 一种新型复合挡土墙在济南奥体中心网球馆中的应用 [J]. 山东大学学报(工学版),2008(1):84-89.

    BAI Y S. The application of a new type of compound retaining wall in tennis hall of Jinan olympic sports center [J]. Journal of Shandong University(Engineering),2008(1):84-89.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(8)  / Tables(1)

Article Metrics

Article views(250) PDF downloads(18) Cited by()

Related

Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2019.04.017

Abstract:   [Introduction]  In the coastal thermal power plant, the unit circulating cooling water system usually adopts the secondary circulation way, which needs to transfer water from the seaside to the front pool of the circulating pump house through the open water intake channel. An inverted trapezoidal section is generally used in the open water intake channel, while a rectangular section is generally used in the front pool of the circulating pump house. Therefore, the connection between the two requires an itd, which is connected from an inverted trapezoidal section to a rectangular section.  [Method]  In the engineering of the past, and flow in open channel water pump room link transition section of the former pool there are many kinds of forms, the most commonly used were divided into two kinds, one kind was through the connection of reinforced concrete box culvert, another was by reinforced concrete buttressed retaining wall connection, the former for wave conditions demand was not high, the latter for demanding wave conditions.  [Result]  Combined with the actual situation of the project site, a special curved surface transition scheme was innovatively proposed to connect the open water intake canal with the front pool of the pump house, and solve the connection difficulties and construction complexity of the transition section between the open water intake canal and the front pool of the pump house. This kind of special structure can not only give full play to the function of gravity retaining wall depending on backfilling soil and its own gravity resistance to sliding, but also reduce the occupied area and greatly reduce the project cost.  [Conclusion]  The engineering practice proves that this new type of curved surface transition section not only satisfies the actual use function of the site, but also saves the cost of the project and facilitates the construction.

HUANG Wenhe, HAO Di, ZHONG Xianglan. Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 106-112. doi: 10.16516/j.gedi.issn2095-8676.2019.04.017
Citation: HUANG Wenhe, HAO Di, ZHONG Xianglan. Application of a New Type Curved Surface Transition Section in Water Channel for Seaside Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(4): 106-112. doi: 10.16516/j.gedi.issn2095-8676.2019.04.017
  • 某海外项目建设2×620 MW中国制造的超临界燃煤发电机组。厂址南面临海,场地平整。电厂采用海水直流供水的循环冷却水系统,电厂运行用淡水取自水库,也可由电厂设置的海水淡化系统制取。1号锅炉桩基工程于2014年10月开工,1号机组于2018年1月完成临时移交(PAC),2号机组2018年7月完成临时移交(PAC)。

    本工程采用明渠取水,循环水明渠采用倒梯形结构断面,明渠底宽3 m,深11 m,边坡为1:2,明渠边坡结构从底层到面层分别为原土-土工布-400厚20~50 mm碎石垫层-150 mm钢筋混凝土面层。循环水通过明渠后进入循环水泵房前池,泵房前池采用矩形断面,净空宽度为29 m,净空深度为12 m,前池长度为28.2 m,采用扶壁式挡墙结构,底板采用200厚的钢筋混凝土结构,5 m×5 m分块。从倒梯形的取水明渠至矩形的泵房前池,需要设置一个连接过渡段,因此如何选择适合本工程的连接过渡段成为循环水取水设计的关键问题。

  • 在以往的火力发电厂工程中,取水明渠和泵房前池连接的过渡段有很多种形式,最常用的主要分为两种,一种是通过钢筋混凝土箱涵连接,另一种是通过钢筋混凝土扶壁式挡墙连接,前者对于波浪条件要求不高,后者对于波浪条件要求很高。

    取水明渠和泵房前池的钢筋混凝土箱涵连接方案主要由取水明渠、引水箱涵、泵房前池组成。其主要特点是施工简便,主要适用于取水明渠波浪较大的情况,通过箱涵连接,既可以满足取水要求,又可以起到对明渠波浪进行消浪的作用,降低水位波动幅度,提高泵房前池的取水稳定性,改善泵房流道的水力性能,减小波浪对水泵工作效率的影响。这种连接方案广泛应用在滨海电厂的泵房近岸取水方式。

    取水明渠和泵房前池的钢筋混凝土扶壁式挡墙连接方案主要由取水明渠、扶壁式挡墙、泵房前池组成。其主要特点是施工简便,主要适用于取水明渠波浪较小的情况,明渠波浪较小,泵房前池的水位波动满足规程规范要求,对泵房流道的水力性能没有影响,因此采用这种简单的连接方案,既不影响水泵的工作效率,又能适当的降低造价[1,2,3]。这种连接方案广泛应用在滨海电厂的泵房远离岸边取水方式。

    在本工程中,由于泵房距离海边较远,因此本工程优先采用敞开式连接方式即钢筋混凝土扶壁式挡墙连接方式,不推荐采用箱涵连接方式。另一方面根据现场实际情况,本工程循环水明渠紧邻永新二期的循环水排水明渠,场地有限,不能满足扶壁式挡墙的大开挖施工要求。因此本工程结合现场实际情况,创新地提出一种新型曲面连接过渡段结构,将取水明渠和泵房前池顺利连接起来,解决取水明渠和泵房前池过渡段的连接困难和施工复杂等问题。这种异型结构既能充分发挥重力式挡土墙依靠回填土料和自身重力抗滑的功能,又可以减少占地面积,大大降低工程造价,是一种经济、稳定的新型连接过渡段结构[1,2,3]

  • 填方区位于厂址南侧海域,主要为海岸地貌,填方区北侧由海岸地貌向海积阶地地貌过渡。回填土密实度不均,多呈松散状,局部呈稍密~中密,该层未经处理不能作为基础的持力层。由于场地表层分布有厚度较大(平均厚度约3 m)的含淤泥粗砂层(②),该层物理力学性质差、密实度松散。场地回填后,含淤泥粗砂层(②)经过长期固结压缩变形后,易造成地层不均匀沉降。

    根据前期勘测成果,厂址区第四系覆盖层由人工填土层、全新世海积砂层与晚更新世海积砂层组成,下伏基岩主要为早白垩系(K1)花岗闪长岩,脉岩主要为早白垩系(K1)中性火成辉绿玢岩及早白垩系(K1)中性火成花岗斑岩。

    厂址区岩土层按性质和成因共分为8大类共18层,填方区钻孔揭露7大类共13层,现将厂区各岩土层的物理力学性质指标如表1所示。

    岩土名称及编号 土层厚度/m 湿密度/kN·m-3 天然孔隙比 天然含水量/% 内聚力c/kPa 压缩模量Es/MPa 承载力特征值fak/kPa
    人工素填土 1.0~7.0
    海积中砂① 0.8~3.8 18.1 0.62 15.97 6.61 180
    海积含淤泥粗砂② 0.6~5.8 20.0 0.56 17.73 14.9 7.46 70
    海积含粘性土中砂(密实)④ 7.5~20.7 19.7 0.62 15.22 43.05 8.92 300
    海积含粘性土中砂(中密)④1 0.6~8.0 20.3 0.55 16.19 38.84 9.41 220
    海积粘土(坚硬)④2 1.4~6.3 21.5 0.59 18.51 32.40 7.79 260
    强风化花岗闪长岩⑤2 2.2~15.7 19.6 0.64 19.27 38.00 8.88 500
    中风化花岗闪长岩⑤3 0.5~11.5
    微风化花岗闪长岩⑤4 0.5~16.8
    强风化辉绿玢岩⑥2 0.7~6.2
    中风化辉绿玢岩⑥3 1.5~5.0
    微风化辉绿玢岩⑥4 1.1~5.7
    中风化花岗斑岩⑦3 5.5

    Table 1.  The station of rock physical and mechanical properties of soil layer index value

  • 根据勘测资料分析,回填区地下水较高、与海水联系密切,回填土层及含淤泥粗砂层具有较强的渗透性,在进行基坑开挖时应做好降、排水措施,基坑开挖后应及时支护。取水明渠施工时,开挖深度11 m,基坑侧壁存在厚度较大的松散素填土层及含淤泥粗砂层,这些土层力学性质差,施工时应考虑地基处理加固方案,同时应对基坑开挖及支护方案应进行专门的研究。

    循环水明渠采用倒梯形结构断面,明渠底宽3m,深11 m,边坡为1:2,在2.5 m高处设置施工马道,马道宽1.5 m,明渠顶宽50 m。根据地质资料,明渠采用大开挖施工方案,明渠开挖顶部两侧采用钢板桩止水,明渠边坡结构从底层到面层分别为原土-土工布-400厚20~50 mm碎石垫层-150 mm钢筋混凝土面层,取水明渠断面如图1所示。

    Figure 1.  CW intake channel section

  • 根据勘测资料分析,回填区地下水较高、与海水联系密切,回填土层及含淤泥粗砂层具有较强的渗透性,在进行基坑开挖时应做好降、排水措施,基坑开挖后应及时支护。循环水泵房及前池施工时,开挖深度12 m,基坑侧壁存在厚度较大的松散素填土层及含淤泥粗砂层,这些土层力学性质差,施工时应考虑地基处理加固方案,同时应对基坑开挖及支护方案应进行专门的研究。

    泵房前池采用矩形断面,净空宽度为29 m,净空深度为12 m,前池长度为28.2 m,采用钢筋混凝土扶壁式挡墙结构[4,5],底板采用200厚的钢筋混凝土结构,5×5 m分块,底板与侧壁之间和底板分块之间采用伸缩缝填充。根据地质资料,泵房前池采用大开挖施工方案,泵房前池开挖顶部两侧采用钢板桩止水,全部采用现浇钢筋混凝土结构,泵房前池断面如图2所示。

    Figure 2.  Pump house basin section

  • 根据取水明渠和循环水泵房的平面布置方案,循环水明渠采用倒梯形结构断面,而泵房前池采用矩形断面,从倒梯形的取水明渠至矩形的泵房前池,需要设置一个连接过渡段。

    循环水泵房前池深为12 m,前池长度为28.2 m,采用扶壁式挡墙结构,底板采用200厚的钢筋混凝土结构,5×5 m分块;循环水明渠采用倒梯形结构断面,深11 m,边坡为1:2,明渠边坡结构从底层到面层分别为原土-土工布-400厚20~50 mm碎石垫层-150 mm钢筋混凝土面层。根据平面布置,取水明渠由倒梯形过渡到矩形断面,过渡段长度为20 m,采用浆砌石边坡挡墙结构,如图3图4图5图6图7所示,边坡挡墙需根据填土边坡的稳定性计算确定,该异型曲面浆砌石边坡挡墙有效结合了明渠边坡和重力式挡土墙各自的优点。

    Figure 3.  The plan of intake water channel and pump house basin

    Figure 4.  The connection transition section plan

    Figure 5.  The 1-1 profile of connection transition section

    Figure 6.  The 2-2 profile of connection transition section

    Figure 7.  The solid renderings of connection transition section

    经过计算分析对比,连接过渡段采用浆砌石边坡挡墙结构,将取水明渠和泵房前池顺利连接起来,解决取水明渠和泵房前池过渡段的连接困难和施工复杂等问题[4,5]。根据土层及使用条件等情况,经过三维建模和计算分析,确定过渡段靠近泵房前池断面的浆砌石挡墙顶宽为30 m,底宽为60 m,过渡段靠近取水明渠断面采用换填一定厚度中粗砂后,中间层和面层做法同取水明渠断面,如图3图4图5图6图7所示。过渡段挡墙结构各部位的断面厚度需根据开挖边坡的稳定性和自身内力计算确定,这种异型结构既能充分发挥重力式挡土墙依靠回填土料和自身重力抗滑的功能,又可以减少占地面积,大大降低工程造价,是一种经济、稳定的新型连接过渡段结构[4,5]

  • 充分利用了边坡和重力式挡土墙自身稳定,节省占地空间、缩短施工工期,同时利用异型曲面的构造,采用浆砌石边坡挡墙结构,就地取材,节约造价,以较小的经济代价完成了取水明渠与泵房前池过渡段的顺利连接。

  • 在泵房前池部分,施工同泵房前池,采用大开挖浆砌石方案,在取水明渠部分,施工同取水明渠,放坡大开挖施工,施工过程中可连续施工,施工的同时进行挡墙后面土方回填,方便施工,缩短施工周期。

  • 这种异型曲面过渡段结构,很好的将明渠的倒梯形断面过渡到泵房前池的矩形断面,从感官视觉效果上连接非常顺畅,有利于循环水取水,确保水流不受任何阻力影响,结构外观和取水工艺整体效果好。

  • 取水明渠一般采用倒梯形断面,而循环水泵房前池一般采用矩形断面,因此两者之间的连接需要一个过渡段,一个从倒梯形断面到矩形断面的连接过渡段。本工程结合现场实际情况,创新地提出一种新型曲面连接过渡段结构,将取水明渠和泵房前池顺利连接起来,解决取水明渠和泵房前池过渡段的连接困难和施工复杂等问题。这种异型结构既能充分发挥重力式挡土墙依靠回填土料和自身重力抗滑的功能,又可以减少占地面积,大大降低工程造价,是一种经济、稳定的新型连接过渡段结构。项目竣工投产以来,经过长期的监测表明,取水明渠和泵房前池连接过渡段结构的沉降和位移均在允许范围以内,连接过渡段的设计应用达到了预期的效果。

Reference (5)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return