• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 7 Issue 2
Jun.  2020
Turn off MathJax
Article Contents

Zhanzi GAN, Yuming ZHANG. Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 141-147. doi: 10.16516/j.gedi.issn2095-8676.2020.02.021
Citation: Zhanzi GAN, Yuming ZHANG. Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 141-147. doi: 10.16516/j.gedi.issn2095-8676.2020.02.021

Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station

doi: 10.16516/j.gedi.issn2095-8676.2020.02.021
  • Received Date: 2019-12-16
  • Rev Recd Date: 2020-02-21
  • Publish Date: 2020-06-25
  • Introduction Urban rail is the most important part of the integrated transportation system, which requires an extremely high degree of deformation control. For a long time, it is a key and difficult work that the adverse effects of bearing platform pile are avoided or reduced because of external operations adjacent to the deep foundation pit and the normal use and operation of the track structure is ensured.    Method   A deep foundation pit adjacent to Qianshan station of Guangzhou Zhuhai intercity rail transit was taken as an example, the difficulties, deformation requirements and many engineering problems encountered in the process of deep foundation pit excavation were analyzed by means of geotechnical test, numerical simulation, empirical analysis and field monitoring, the influence of deep foundation pit excavation on bearing platform pile and the deformation characteristics of deep foundation pit were studied.    Result   The research results show that: the deformation indexes of bearing platform pile of the urban rail station calculated and monitored actual are less than the allowable values, which meet the deformation requirements and construction control requirements of the bearing platform pile of the urban rail station; it is proved to be safe, reliable, scientific, reasonable and practical that the supporting scheme of the underground continuous wall + three internal supports and the other sections adopt the row pile + three internal supports; the construction control measures proposed effectively solve many engineering problems such as difficult construction control, strict deformation requirements and complex site conditions.    Conclusion   The reasonable support scheme, reliable numerical analysis, effective construction control measures and research methods and ideas in this paper can provide reference for similar engineering problems.
  • [1] 中华人民共和国住房和城乡建设部. 城市轨道交通结构安全保护技术规范:CJJ/T202—2013 [S]. 北京:中国建筑工业出版社,2013.
    [2] 徐腾飞.基坑开挖对近接地铁车站影响的数值分析 [J].土工基础,2019,33(4):418-423.
    [3] 徐小为,项钰,肖婷.邻近地铁的深基坑围护施工关键技术 [J]. 建筑施工,2019,41(7):1218-1220.

    XUX W,XIANGY,XIAOT. Key technologies of deep foundation pit enclosure construction adjacent to subway [J]. Building Construction,2019,41(7):1218-1220.
    [4] 高显平. 某深基坑施工对临近高速铁路路基影响的研究 [J]. 高速铁路技术,2018,9(3):31-35.

    GAOX P. Research on influence of deep foundation pit construction on subgrade of adjacent high-speed railway [J]. High Speed Railway Technology,2018,9(3):31-35.
    [5] 杨庆刚.临近既有城市轨道交通工程的基坑施工影响分析 [J]. 工程建设与设计,2017(24):38-40.

    YANGQ G. Impact analysis of foundation pit construction adjacent to existing urban rail transit projects [J]. Construction & Design for Engineering,2017(24):38-40.
    [6] 周杰.软土地区基坑开挖对邻近地铁影响分析及防治措施 [D].北京:清华大学,2017.
    [7] 张佳. 市中心邻近高架桥的深基坑综合施工技术 [J].建筑施工,2014,36(7):782-784.
    [8] 董慧超,冯科明.基于既有城市轨道交通防护的某基坑支护设计 [J]. 岩土工程技术,2016,30(5):229-234.
    [9] 中华人民共和国住房和城乡建设部.建筑基坑支护技术规程:JGJ120—2012 [S]. 北京:中国建筑工业出版社,2012.
    [10] 郑刚,刘庆晨,邓旭.基坑开挖对下卧运营地铁隧道影响的数值分析与变形控制研究 [J]. 岩土力学,2013,34(5):1459-1468.
    [11] 王婷婷,苏莉源,卢生军. 新型海上风电基础结构空间三维数值模拟研究 [J].南方能源建设,2018,5(3):1-8.

    WANGT T,SUL Y,LUS J. Spatial 3D numerical simulation research on a new foundation structure of offshore wind power [J]. Southern Energy Construction,2018,5(3):1-8.
    [12] 聂卫平,郑文棠. 基于地质和监测资料的地下洞室数值仿真模型概化分析 [J]. 南方能源建设,2016,3(4):96-101.
    [13] 宋晓凤,姚爱军,张剑涛,等.深基坑开挖对邻近既有地铁隧道及轨道结构的影响研究 [J].施工技术,2018,47(5):122-127.
    [14] 麦家儿. 基坑施工对邻近地铁车站和区间隧道的影响分析 [J]. 城市轨道交通研究,2012,15(6):100-103.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(9)  / Tables(7)

Article Metrics

Article views(311) PDF downloads(45) Cited by()

Related

Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station

doi: 10.16516/j.gedi.issn2095-8676.2020.02.021

Abstract:  Introduction Urban rail is the most important part of the integrated transportation system, which requires an extremely high degree of deformation control. For a long time, it is a key and difficult work that the adverse effects of bearing platform pile are avoided or reduced because of external operations adjacent to the deep foundation pit and the normal use and operation of the track structure is ensured.    Method   A deep foundation pit adjacent to Qianshan station of Guangzhou Zhuhai intercity rail transit was taken as an example, the difficulties, deformation requirements and many engineering problems encountered in the process of deep foundation pit excavation were analyzed by means of geotechnical test, numerical simulation, empirical analysis and field monitoring, the influence of deep foundation pit excavation on bearing platform pile and the deformation characteristics of deep foundation pit were studied.    Result   The research results show that: the deformation indexes of bearing platform pile of the urban rail station calculated and monitored actual are less than the allowable values, which meet the deformation requirements and construction control requirements of the bearing platform pile of the urban rail station; it is proved to be safe, reliable, scientific, reasonable and practical that the supporting scheme of the underground continuous wall + three internal supports and the other sections adopt the row pile + three internal supports; the construction control measures proposed effectively solve many engineering problems such as difficult construction control, strict deformation requirements and complex site conditions.    Conclusion   The reasonable support scheme, reliable numerical analysis, effective construction control measures and research methods and ideas in this paper can provide reference for similar engineering problems.

Zhanzi GAN, Yuming ZHANG. Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 141-147. doi: 10.16516/j.gedi.issn2095-8676.2020.02.021
Citation: Zhanzi GAN, Yuming ZHANG. Numerical Simulation and Construction Control of Deep Foundation Pit Support Adjacent to Urban Rail Station[J]. SOUTHERN ENERGY CONSTRUCTION, 2020, 7(2): 141-147. doi: 10.16516/j.gedi.issn2095-8676.2020.02.021
  • 城市轨道交通承担着巨大的运营量,是城市经济生活的命脉与生命线,其运营过程中的安全问题是重中之重,因此,为确保城市轨道运营绝对安全,沿线均设置有控制保护区,在保护区内进行的外部作业均应按相关规范要求,采取严格的控制措施[1]。然而,随着城市的发展,土地开发区域往往分布于轨道线路控制保护区内,在开发期间的诸多外部作业因素中,基坑开挖工程对轨道的影响尤为显著,与此同时,基坑自身的变形控制与稳定性问题亦显得尤为重要。因此,如何有效避免或减小基坑开挖对轨道承台桩变形的影响、控制基坑自身变形、保证基坑稳定性,是基坑支护结构设计过程中重点考虑和亟需解决的问题。

    近年来,在毗邻轨道深基坑施工方面的研究取得了一些成果。徐腾飞[2]以毗邻南昌地铁站红谷滩中央金融大街基坑为研究对象,采用数值模拟方法,量化和评估了临近工程控制因素所带来的风险。徐小为[3]等为保证轨道交通安全,采取地下连续墙、支撑体系、变形监测及拆除等多项技术措施,取得了良好的效果。高显平[4]利用数值模拟方法,计算了深基坑各施工步骤对高速铁路路基的变形影响,并对路基进行了监控,保证了铁路的运营安全。杨庆刚[5]研究了基坑施工段对车站结构产生的变形影响,并提出了相应的处置措施,为类似工程提供了较好参考。周杰[6]基于软土地区的岩土层地质特征以及轨道交通结构的受力情况,深入分析了邻近基坑工程施工、注浆加固及降水等措施对已建地铁变形、稳定性及基坑自身稳定性的影响,并提出了相应的控制措施,保证了地铁设施安全及基坑自身的稳定性。

    本文以毗邻高架城轨站深基坑开挖为例,采用土工试验、数值模拟、经验分析与现场监测等多种方法,研究各施工段对轨道承台桩的变形影响,分析施工过程的难点和关键点,进而提出切实可行的施工控制措施,以确保轨道正常运营和施工安全。

  • 拟建基坑面积约52 920 ㎡,周长约1 120 m,近似呈130 m×440 m的长方形,其中北侧长边平行于已营运的广珠城际轨道交通前山站展布(如图1所示),基坑开挖深度15.1 m,毗邻城轨塔楼的核心筒处自地表以下挖深20.5 m;基坑边线距离广珠城际线路中心距离为35.6 m,距离前山站高架桥边墩中心距离为15.5 m,距离前山站站房主体结构桩基中心距离为15.5 m,距离前山站站房自动扶梯边桩中心距离为7.1 m。

    Figure 1.  Relationship between foundation pit sideline and Qianshan light rail station and its surrounding environment

    广珠城轨前山车站范围高架桥孔跨为7~32 m四箱单室简支梁,11~18号桥墩均采用三柱门架墩,桥墩帽梁采用预应力混凝土帽梁,桥墩基础均采用钻孔灌注桩基础。广珠城际轨道设计时速为200 km/h,其性质与现有国铁一致,采用的是动车组列车,因此对基坑开挖变形控制要求极为严格,综合考虑桥顶容许变形量、墩柱、门架应力及桥高等因素后城轨管理方提出如下变形控制要求:门式桥墩承台水平位移不超过3 mm,沉降不超过2 mm;主体结构承台水平位移不超过4 mm,沉降不超过3 mm;楼梯承台水平位移不超过5 mm,沉降不超过3 mm。

  • 为控制基坑开挖的总变形量,减少对城轨站的影响,本基坑存在如下难点需在设计、建模及施工中解决[7]

    1)基坑开挖深度大、距离城轨近。基坑深度约15.1 m,电梯井处开挖最大深度达20.5 m,基坑开挖临空面与桥墩承台距离仅15.5 m、与楼梯距离最近仅7.1 m,需采取刚度较大的支护体系。

    2)长边平行城轨。基坑长边与城轨及城轨站平行,边长达422 m,基坑变形空间效应难以控制,应考虑分区开挖。

    3)支撑跨度大。最大支撑跨度达145.7 m,支撑体系刚度易衰减,且受力及变形受温度变化影响较大,需采取有效的温控措施。

    4)不能按正常条件换、拆撑。拟建地下室负一层为商业,层高较大,不能采取正常的换、拆撑工序施工,需采取闷拆措施,支撑体系布置均应避开坑内地下室柱、墙结构设计[8]

  • 为模拟各基坑开挖工况、预估基坑开挖引起的变形量及对城轨的影响,采用数值模拟的方法对基坑支护体系进行了多方案模拟比选分析,最终选择经济相对合理且能满足城轨安全运营的变形要求的支护方案,即基坑毗邻城轨站段采用地下连续墙+内支撑,其余各段采用排桩+内支撑的支护方案[9]

  • 根据支护设计经验及专家论证,具体支护方案定为:毗邻城轨站段采用地下连续墙(厚1 200 mm)+三道内支撑,其余各段采用排桩(直径1 200 mm)+三道内支撑,第一、二两道为水平内支撑标高分别位于+1.7 m和-4.8 m处,第三道为斜内支撑,其反力墩处标高为-10.60 m。基坑支护断面及与轻轨站关系如图2所示。

    Figure 2.  Section of foundation pit support and its relationship with pier location of light rail station

  • 模型尺寸按实际工程规模建立,在充分考虑边界效应的基础上,模型各方向上(沿高架桥纵向、垂直高架桥方向、深度方向)的尺寸分别为10.9 m、135 m和80 m[10]。基坑开挖过程被分解成多个工况,分别模拟研究基坑开挖过程对前山站高架桥和车站站房桩基承台的影响。根据土工试验,数值模拟选取了合理的物理力学参数,岩土体材料本构模型采用修正的摩尔库伦模型,桩结构与土体之间接触采用桩接触单元进行处理,充分考虑了桩和桩周土体间的摩擦力[11]。数值计算模型和各道支撑布置见图3图4

    Figure 3.  Numerical calculation model

    Figure 4.  Support arrangement position of each track

  • 模型顶面为自由面,不加约束;模型四周(XY两个方向)施加水平力,任一点的水平力大小为竖向重力乘上侧压力系数;模型底部加竖向约束(辊支承)[12]

  • 根据土工试验,模型各岩土体的物理力学参数见表1,支护和支撑体系物理力学参数见表2。根据工程经验及实际情况,本构关系采用修正摩尔-库伦。

    地层名称内摩擦角φ/(°)粘聚力c/kPa重度/(kN·m-3弹性模量ES/MPa卸载模量/MPa泊松比本构关系
    素填土121018.515600.30修正摩尔-库伦
    淤泥81217.06240.35修正摩尔-库伦
    砾砂33020.0602400.25修正摩尔-库伦
    砂质粘性土222818.0602400.30修正摩尔-库伦
    全风化花岗岩284019.01506000.25修正摩尔-库伦
    强风化花岗岩325020.03001 2000.25修正摩尔-库伦

    Table 1.  Selection of physical and mechanical parameters and constitutive relations of rock and soil layers

    结构名称截面尺寸/mm材料本构关系弹性模量/MPa
    灌注桩/连续墙φ1 500/1 200C30混凝土弹性3.00×104
    第一道支撑1 100×1 200C40混凝土弹性3.25×104
    第二道支撑1 300×1 200C40混凝土弹性3.25×104
    第三道支撑1 000×1 000C40混凝土弹性3.25×104
    楼板厚150C30混凝土弹性3.00×104
    负三层底板厚800C30混凝土弹性3.00×104

    Table 2.  Physical and mechanical parameters of supporting and supporting system

  • 根据基坑设计开挖工况及施工技术要求,各坑开挖工况与支护情况见表3

    编号工况步骤描述单元体状态
    1模拟初始地应力场包括了模型、边界条件激活岩土体、承台桩单元体
    2施工地连墙完成地下连续墙的施工激活地连墙单元体
    3开挖第一步开挖岩土体至第一道支撑底部钝化第一步开挖土体单元体
    4施工第一道支撑施工冠梁、第一道支撑激活第一道撑、冠梁单元体
    5开挖第一步开挖岩土体至第二道支撑底部钝化第二步开挖土体单元体
    6施工第二道支撑施工腰梁、第二道支撑激活第二道撑、腰梁单元体
    7开挖第一步开挖岩土体至第三道支撑底部钝化第三步开挖土体单元体
    8施工第三道支撑施工腰梁、第三道支撑激活第三道撑、腰梁单元体
    9开挖第一步开挖至基坑底部钝化第四步开挖土体单元体
    10浇筑负三层底板负三层地下室底板施工激活负三层底板单元体
    11第三道支撑拆除负三层地下室底板处换撑施工激活第三层换撑带单元体
    12浇筑负一、二层底板负一、二层地下室底板施工激活负一、二层底板单元体
    13第一、二道支撑拆除肥槽素混凝土回填施工激活换撑回填土单元体

    Table 3.  Numerical simulation under different working conditions

  • 通过计算,最不利工况计算结果见表4表5

    计算区段最大变形值/mm允许值/mm
    车站承台桩(近)—3.21≤4.0
    高架桥边墩承台桩(近)—2.87≤3.0
    高架桥中墩承台桩(中)—2.07≤3.0
    高架桥边墩承台桩(远)—1.30≤3.0

    Table 4.  Calculation results of lateral displacement of pile cap

    计算区段最大变形值/mm允许值/mm
    车站承台桩区域8.53≤15.0
    高架桥承台桩区域8.80≤15.0

    Table 5.  Calculation results of lateral displacement of supporting structure

    表4表5可知,拟采用的支护方案可满足基坑和高架桥墩的变形控制要求,最不利工况计算结果见图5图8(图中单位mm,图6中最内排为车站上下楼梯桩,承台计算变形最大-4.39 mm,拟视实际变形情况对上部结构另行加固处理)[13,14]

    Figure 5.  Directional displacement of foundation pit of supporting structure at station bearing platform when excavating to pit bottom

    Figure 6.  Displacement in the direction of pile foundation pit from excavation to pit bottom

    Figure 7.  Directional displacement of foundation pit of supporting structure at viaduct bearing platform from excavation to pit bottom

    Figure 8.  Displacement of pile foundation of viaduct pile cap from excavation to pit bottom

  • 1)为避免地下连续墙成槽施工对城轨产生影响,槽壁应结合止水设计进行加固,且每幅连续墙成槽宽度不宜大于5 m。

    2)为确保支撑体系的整体性,需在第一层支撑体系完全封闭后方可进行基坑开挖。

    3)支撑跨度大,为减小温度效应对基坑变形的影响,施工时支撑梁在温度较低的时段进行闭合,在高温时段采用喷淋系统降温,控制温差对基坑变形产生的不利影响。

    4)基坑长边长度大,空间效应明显,故基坑临城轨站侧第二道支撑以下土方,根据塔楼分布情况,采用分段跳挖法施工,将基坑该长边段分为若干区分段作业,并及时完成底板的浇筑和底板与连续墙间的刚性连接。

    5)为避免拆撑后基坑侧壁变形对城轨产生影响,城轨侧基坑肥槽需采用低标号素砼回填,支撑体系在基坑完成肥槽回填后再实施拆撑。

    6)加强城轨段基坑变形监测,并沿城轨逐墩设置变形监测点,重点监测桥墩的水平位移和沉降。

  • 截至本稿完成时,基坑地下室结构已顺利完成至±0.00 m以上,并完成肥槽回填,根据上述计算分析,各承台桩自近而远位移依次减小,实测结果变化趋势与计算分析结论基本一致,故仅对距离基坑最近处承台位移计算值与实测值进行比较见表6;基坑侧向位移实测最大值与计算值比较见表7,整段基坑发生的最大侧向位移位于高架承台区域的CX8号监测点,相应的深层位移曲线如图9所示。

    承台桩部位计算值/mm实测值/mm允许值/mm
    车站主体结构承台桩(近)-3.21-1.9≤4.0
    高架桥边墩承台桩(近)-2.87-1.8≤3.0

    Table 6.  Comparison of calculated and measured lateral maximum displacement of pile caps

    计算区段监测点计算值/mm实测值/mm允许值/mm
    车站承台桩区域CX068.5310.9≤15.0
    高架桥承台桩区域CX088.8013.7≤15.0

    Table 7.  Comparison of calculated and measured lateral maximum displacement of foundation pit support structure

    Figure 9.  graph of deep displacement of inclinometer CX08

    从上述对比结果来看,需保护的车站及高架桥承台位移实测值与计算值较接近且均小于允许值,基坑支护结构侧向最大位移实测值略大于计算值。究其原因主要在于实际施工时,根据车站及高架桥墩承台位移监测结果,调整了基坑施工工况,实际施工时未设置第三层抛撑,实测基坑最大位移与计算值略大于计算值,但均控制在基坑允许变形范围内。

  • 本文采用数值模拟方法,对毗邻广珠城际轨道交通前山站的某基坑工程进行了数值计算,并提出了相应的施工控制措施,得到出如下结论:

    1)采用有限元模型估算的高架桥墩承台和车站主体结构承台变形量较实际发生值略微偏大,估算的基坑支护体系变形与实际变形吻合程度较好。实际施工时采用信息法施工,根据变形实测结果适当调整施工工况,既能保证高架桥墩承台和车站主体结构的安全使用,又能方便施工、加快施工进度,数值分析结论为项目的顺利实施提供了可靠的依据。

    2)基坑除毗邻城轨站段采用地下连续墙+内支撑外,其余各段均采用排桩+内支撑支护形式,有效地控制了轨道承台桩的变形,支护方案选型合理。

    3)基坑面积大、施工周期长、且内支撑最大跨度达145.7 m,支撑体系应力及变形受温度变化影响较大,施工时支撑梁在温度较低的时段进行闭合,在高温时段采用喷淋系统降温,能有效控制温差对基坑变形产生的不利影响。

    4)基坑临城轨站侧第二道支撑以下土方,根据塔楼分布情况,采用分段跳挖法施工,将基坑该长边段分为若干区分段作业,并及时完成底板的浇筑和底板与连续墙间的刚性连接,有效地控制了基坑的位移。

Reference (14)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return