• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue 2
Jun.  2021
Turn off MathJax
Article Contents

GUO Yuanping,XU Min,GUO Zuogang,et al.Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness[J].Southern Energy Construction,2021,08(02):71-77. doi:  10.16516/j.gedi.issn2095-8676.2021.02.011
Citation: GUO Yuanping,XU Min,GUO Zuogang,et al.Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness[J].Southern Energy Construction,2021,08(02):71-77. doi:  10.16516/j.gedi.issn2095-8676.2021.02.011

Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness

doi: 10.16516/j.gedi.issn2095-8676.2021.02.011
  • Received Date: 2021-01-07
  • Rev Recd Date: 2021-03-16
  • Publish Date: 2021-06-25
  •   Introduction  With incessant grid-connection of wind farms and photovoltaic power stations, the development of regional power grid structure cannot keep pace with the growth rate of new energy unit capacity, characteristics of multi-energy mix and hierarchical features of section bring difficulties to the formulation of day-ahead generation scheduling, for this reason, a method for multi-level and multi-energy day-ahead generation scheduling considering the safety constraint of the section and the fairness of dispatch was proposed.  Method  This paper presented a depth-first search for the restricted section, and proposed an output limitation allocation strategy based on information entropy. A fairness calculation method was constructed by using the concept of information entropy in economics to guide the quantitative indicators for evaluating scheduling fairness.  Result  Under the circumstances of ensuring that the cross-sectional current is close to the stability limit, the active power of each power plant is distributed reasonably and equitably, thereby realizes the full utilization of wind and solar resources.  Conclusion  Through a practical example of a regional power grid, it is proved that this method can solve the existing problems in new energy day-ahead generation scheduling and has good practical application value.
  • [1] 周强,汪宁渤,何世恩,等. 高弃风弃光背景下中国新能源发展总结及前景探究[J]. 电力系统保护与控制,2017,45(10):146-154.

    ZHOUQ,WANGN B,HES E,et al. Summary and prospect of China’s new energy development under the background of high abandoned new energy power [J]. Power System Protection and Control,2017,45(10):146-154.
    [2] 李天权,刘琦,赵洁,等. 基于断面安全约束的高渗透率风-光-水电有功控制策略 [J]. 智慧电力,2018,46(11):33-39+58.

    LIT Q,LIUQ,ZHAOJ,et al. Active power control strategy for power grid with high permeability wind-solar-hydro based on cross-section safety constraints [J]. Smart Power,2018,46(11):33-39+58.
    [3] 褚云龙,李秋芳,马晓伟,等. 考虑复杂级联断面的多能源协调优化技术及应用 [J]. 电网技术,2020,44(10):3656-3662.

    CHUY L,LIQ F,MAX W,et al. Technology and application of multi-energy coordinative optimization with complex cascade transmission section [J]. Power System Technology,2020,44(10):3656-3662.
    [4] 陈雷,卢斯煜. 风电场出力特性与集群效应分析方法研究 [J]. 南方能源建设,2017,4(1):31-37.

    CHENL, LUS Y. Research on the analysis method for wind power generating output characteristic and cluster effect [J]. Southern Energy Construction, 2017, 4(1):31-37.
    [5] 代江,唐建兴,单克,等. 电网安全和调度公平性的新能源调度方法研究 [J]. 贵州电力技术,2017,20(5):4-8.

    DAIJ,TANGJ X,SHANK,et al. Research on new energy dispatching method for grid security and scheduling fairness [J]. Guizhou Electric Power Technology,2017,20(5):4-8.
    [6] 卓峻峰,金学洙,邓波,等. 考虑断面安全约束的大规模风电有功控制 [J]. 电网技术,2015,39(4):1014-1018.

    ZHUOJ F,JINX Z,DENGB,et al. An active power control method of large-scale wind farm considering security constraints of tie lines [J]. Power System Technology,2015,39(4):1014-1018.
    [7] 李利利,涂孟夫,丁恰,等. 适应大规模风电接入的发电出力计划两阶段优化方法 [J]. 电力系统自动化,2014,38(9):48-52.

    LIL L,TUM F,DINGQ,et al. Two-stage optimization method for generation output scheduling with large-scale wind power integration [J]. Automation of Electric Power Systems,2014,38(9):48-52.
    [8] 杨争林,唐国庆. 全周期变时段“三公”调度发电计划优化模型 [J]. 电网技术,2011,35(2):132-136.

    YANGZ L,TANGG Q. A generation scheduling optimization model suitable to complete period and variable intervals and conforming to principles of openness,equity and justness [J]. Power System Technology,2011,35(2):132-136.
    [9] 魏学好,胡朝阳,杨莉. 对“三公”调度现有评价指标的思考和建议 [J]. 电力系统自动化,2012,36(20):109-112.

    WEIX H,HUC Y,YANGL. Review and suggestions on present evaluation indicators of“Three-Govern” dispatch [J]. Automation of Electric Power Systems,2012,36(20):109-112.
    [10] 张成刚,王秀丽. 基于修正加权变异系数的电力调度公平性指标 [J]. 电力技术经济,2009,21(5):5-9+36.

    ZHANGC G,WANGX L. Impartiality indexes of powpower dispatching based on modified weighed coeficient of variation[J]. Electric Power Technologic Economics,2009,21(5):5-9+36.
    [11] 赵翔宇,安成,姚刚,等. 我国电力市场改革的调度公平性评价指标体系研究 [J]. 电力大数据,2018,21(3):44-50.

    ZHAOX Y,ANC,YAOG,et al. Research on power dispatching fairness evaluation index system adapted to the power market reform in our country [J]. Power Systems and Big Data,2018,21(3):44-50.
    [12] 赵适宜,李正文,丁鹏,等. 基于基尼系数的“三公”调度模型研究 [J]. 水利水电技术,2019,50(4):212-219.

    ZHAOS Y,LIZ W,DINGP,et al. Research on impartiality and openness of power dispatching model based on gini coefficient [J]. Water Resources and Hydropower Engineering,2019,50(4):212-219.
    [13] SHANNONC E. A mathematical theory of communication [J]. Bell System Technical Journal,1948,27(4):623-656.
    [14] 柯人观,黄民翔,徐辰婧. 基于信息熵的电力调度公平性指标探讨 [J]. 华东电力,2012,40(6):1060-1063.

    KER G,HUANGM X,XUC J. Impartiality index of power dispatching based on information entropy [J]. East China Electric power,2012,40(6):1060-1063.
    [15] 贾艳红,赵军,南忠仁,等. 基于熵权法的草原生态安全评价——以甘肃牧区为例 [J]. 生态学杂志,2006,25(8):1003-1008.

    JIAY H,ZHAOJ,NAN Z R,et al. Ecological safety assessment of grassland based on entropy area:a case study of Gansu pastoral [J]. Chinese Journal of Ecology,2006,25(8):1003-1008.
    [16] 黄楚珩,蒋志云,杨志广,等. 基于熵值法和层次分析法的广东省水资源安全评价及影响因素分析 [J]. 水资源与水工程学报,2019,30(5):140-147.

    HUANGC H,JIANGZ Y,YANGZ G,et al. Evaluation and factors of water resource security of Guangdong province using entropy value and analytic hierarchy process methods [J]. Journal of Water Resources and Water Engineering,2019,30(5):140-147.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(10)  / Tables(2)

Article Metrics

Article views(368) PDF downloads(41) Cited by()

Related

Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness

doi: 10.16516/j.gedi.issn2095-8676.2021.02.011

Abstract:   Introduction  With incessant grid-connection of wind farms and photovoltaic power stations, the development of regional power grid structure cannot keep pace with the growth rate of new energy unit capacity, characteristics of multi-energy mix and hierarchical features of section bring difficulties to the formulation of day-ahead generation scheduling, for this reason, a method for multi-level and multi-energy day-ahead generation scheduling considering the safety constraint of the section and the fairness of dispatch was proposed.  Method  This paper presented a depth-first search for the restricted section, and proposed an output limitation allocation strategy based on information entropy. A fairness calculation method was constructed by using the concept of information entropy in economics to guide the quantitative indicators for evaluating scheduling fairness.  Result  Under the circumstances of ensuring that the cross-sectional current is close to the stability limit, the active power of each power plant is distributed reasonably and equitably, thereby realizes the full utilization of wind and solar resources.  Conclusion  Through a practical example of a regional power grid, it is proved that this method can solve the existing problems in new energy day-ahead generation scheduling and has good practical application value.

GUO Yuanping,XU Min,GUO Zuogang,et al.Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness[J].Southern Energy Construction,2021,08(02):71-77. doi:  10.16516/j.gedi.issn2095-8676.2021.02.011
Citation: GUO Yuanping,XU Min,GUO Zuogang,et al.Research on New Energy Generation Scheduling for Grid Security and Scheduling Fairness[J].Southern Energy Construction,2021,08(02):71-77. doi:  10.16516/j.gedi.issn2095-8676.2021.02.011
  • 随着新能源迅速发展1,地区电网调度管辖范围内的风电场和光伏电站愈来愈多。新能源并网形成输电断面嵌套分层结构,正常运行方式下可能存在断面越限,在电网检修方式或电网N-1事故情况下,断面越限更加严重,导致新能源出力受限时出现不合理弃风、弃光的现象。多能源混合和输电断面的嵌套分层结构特征给日前发电计划制定带来困难2-3。风力发电具有很强的随机性和波动性4,光伏在夜间不具备发电条件,仅在白天发电,具有明显的间歇性。风电和光伏为主的多能源并网,其出力特性不同,使得各风电场和光伏电站功率如何公平分配成为一个难点。

    文献[5]以调度工作评价分数作为分配新能源出力的依据,以弃风率和弃光率一致作为衡量调度公平性的指标,提出了新能源弃风率、弃光率基本一致的两阶段双层次调度新方法。文献[6]提出一种大规模风电分层断面的实时有功控制方法,实现各风电场发电能力的转移。文献[7]基于大规模风电接入的情况,提出一种发电计划两阶段优化的方法,第一阶段为不严格保证电力平衡的无约束期望计划编制,第二阶段以常规机组发电计划偏差成本和风电弃风成本优化目标。文献[8]建立了全周期变时段优化模型,提出约束自适应选择策略。文献[9]提出现有“三公”调度评价指标存在的问题及改进思路,并提出一种考虑煤价波动的评价指标。文献[10]定义了修正后的合同电量完成率,提出基于修正加权变异系数的合同电量执行公平性指标。文献[11]在制定了调度公平性评价原则的基础上,从主题、管理、业务三个维度构建了一种新的调度公平性评价指标体系。文献[12]兼顾系统运行公平与经济性,提出一种将基尼系数作为约束条件,将发电成本作为目标函数的“三公”调度模型。

    本文利用深度搜索越限断面的方法,从内层到外层的优先级顺序逐步降低进行搜索,保证断面不超过稳定极限,计算出新能源场站所能发电的最大空间。提出基于信息熵13的公平性调度出力分配策略,利用经济学领域中信息熵的概念指导评价调度公平性的量化指标14,构造一种公平性计算方法,计算出受限断面下相关电厂的出力受限分配权值和系数,在保证断面潮流接近稳定极限的情况下,合理公平进行各个电厂的有功功率分配。

  • 多能源混合的电厂日前发电计划需要考虑输电断面的安全约束,根据可就地消纳的负荷预测、输电断面的输送能力等因素,计算断面安全约束条件下的风电场和光伏电站的可接纳空间,当该断面下各个电厂的发电预测功率超过该接纳空间时,输电断面越限,需对风电和光伏的发电计划进行出力限制。

    在保证所有断面功率不越限的情况下,使断面得到最大化利用,实现各光伏、风电最大化消纳。本文提出一种新方法,包括深度搜索越限断面和多能源调度公平性的出力受限分配,基本思路是:(1)电厂初始分配的日前发电计划功率均以其出力预测为准,采用深度优先搜索越限断面的方法,从内层到外层的优先级顺序逐步降低进行搜索,计算该断面下电厂发电的最大空间和出力受限值;(2)基于熵值法计算同一越限断面下各电厂的出力受限分配权重得分,对各电厂重新进行有功功率的计算。该方法主要特点在于:(1)不存在剩余调节功率重新分配的情况,每个断面仅进行一次有功功率控制;(2)充分利用了新能源送出断面,同时保证了各个风电场和光伏电站出力受限的公平分配。

  • 假设某风电和光伏混合的新能源输电断面由分层嵌套的多个输电线路组成,如图1所示,其对应的变电站母线接有风电场、光伏电站和用电负荷,无储能装置,电厂未接入AGC控制。最外层的是断面1和断面2,处于第2层的是断面3,处于第3层的是断面4,处于第4层的是断面5。

    Figure 1.  Structure of a transmission section

    系统目标是保证各个断面满足安全约束条件,且各个断面机组出力按最大可接纳空间进行分配。

    设某i断面相关的电厂总出力优化目标为P'ti-g,优化目标函数可表达为:

    max(Pti-g')=f(Pti-f',Pti-c',βi) ((1))

    等式约束条件为:

    Pti-f'=inPti-f,i=1,2,3n ((2))
    Pti-c'=inj=1mPti-j-c,j=1,2,3m,i=1,2,3n ((3))

    不等式约束条件为:

    Pti-g'Pi-max+Pti-f' ((4))

    式中:f为算法规则;P'ti-fi断面相关变电站(当前断面及子断面)在t时刻总的负荷预测;Pti-fi断面当前变电站在t时刻的负荷预测;P'ti-ci断面相关电厂在t时刻的总出力预测;Pti-j-ci断面j电厂在t时刻的出力预测;βii断面的深度系数;Pi-maxi断面的有功限值。

  • 断面出力优化算法流程如图2所示。根据调度相关规定可直接将电厂出力预测作为分配初始值,达到新能源最大化消纳的目的。

    Figure 2.  Flow chart of the algorithm

    i断面相关电厂出力分配后和相关变电站负荷预测进行计算,预计断面功率Pti=P'ti-g-P'ti-f,采用深度优先搜索算法,从内层到外层的优先顺序校验所有断面,从而搜索越限的断面,若不满足PtiPi-max,则将断面目标功率设置为Pi-max,电厂出力目标值设置为Pi-max+P'ti-f,计算出越限断面最内层所需限制的出力,按考虑调度公平性的出力受限分配方法对该断面下相关的电厂进行出力限制,达到有功功率重新分配的目的。

    每一次控制断面功率后,根据各电厂分配的最新出力,重新计算各断面功率,用相同的方法再次校验是否存在越限断面。

  • 本文提出基于信息熵的公平性调度出力受限分配策略,利用经济学领域中信息熵的概念指导评价调度公平性的量化指标,构造公平性计算方法,计算出受限断面下相关电厂的出力受限分配系数。

    将电厂的出力预测准确率、装机容量、合同电量完成率、发电设备利用小时数四个指标要素纳入调度公平性指标。将出力预测准确率纳入负向指标,将装机容量、合同电量完成率和发电设备利用小时数纳入正向指标,当断面超稳定极限时,负向指标越低,电厂出力受限程度也就越高,而正向指标值越大,对出力受限的贡献就越大。

    风电和光伏昼夜发电的不同特征可由设备利用小时数体现,风力发电不分昼夜,夜间光伏不发电,给风电留出了裕度,因此将设备利用小时数作为调度公平性指标,在白天时段光伏可多留一定裕度,合理利用风光资源。电厂出力预测作为日前发电计划的计算基础,其准确率直接影响到出力受限分配的准确性,因此将出力预测准确率纳入调度公平性指标。装机容量作为日前发电计划的边界条件,装机容量较大时,出力受限程度相应增加。合同电量完成率作为电厂考核的指标之一,在断面越限进行出力受限时,合同电量完成率较低的电厂可适当少限制出力。

  • 指标无量纲化将各指标进行标准化处理15-16,本文选择极值法,如式(5)式(6)所示:

    对于正向指标:

    xijz'=xijz-mizMiz-miz×10 ((5))

    对于反向指标:

    xijz'=Miz-xijzMiz-miz×10 ((6))

    式中:xijzi断面j电厂的z指标;mizi断面j电厂中最小的z指标;Mizi断面j电厂中最大的z指标。

  • 计算i断面相关电厂z指标下j电厂的特征比重。

    pijz=xijz'j=1mxijz' ((7))

    熵值计算:

    eiz=-1lnnj=1mpijzlnpijz, 0eiz1 ((8))

    差异性系数计算:

    giz=1-eiz ((9))

    确定评价指标的权重wiz

    wiz=gizz=1Zgiz,z=1,2,3Z ((10))

    计算综合得分:

    sij=z=1Zwizpijz ((11))

    计算出力受限:

    Xij=Ki×sij×Pti-j-cj=1msij×Pti-j-c ((12))

    式中:Kii断面需受限的出力;Xiji断面j电厂受限的出力。

  • 以某实际区域的110 kV电网断面结构为算例进行分析,如图3所示。电厂1和电厂3为风电,电厂2为光伏,总装机容量为197 MW,变电站所供负荷多为居民用电,负荷较轻,就地消纳能力较弱。网架结构为环网线路,本文计算分析时将上级电网到变电站3的线路作为开口点,此时新能源场站均通过断面1并入主网,断面1、断面2、断面3的线路有功限值为90 MW,断面4为100 MW。深度优先搜索越限的断面,以断面功率接近稳定极限值运行,最终保证所有断面不超稳定极限,达到断面的最大化利用。

    Figure 3.  Structure of the transmission section of an actual power grid

    越限断面下相关电厂的综合得分是四个指标对出力受限的综合影响,电厂得分越高,出力受限程度越高。将表1中出力预测准确率、装机容量、合同电量完成率、发电设备利用小时数四个调度公平性指标进行熵值法计算,得出每个断面下各个电厂的综合得分。

    所属断面新能源场站出力预测准确率/%装机容量/MW合同电量完成率/%发电设备利用小时数/h综合得分
    断面1 /断面2电厂180.344836.231 066.589.81
    电厂291.495036.34501.371.25
    电厂397.509942.77986.005.56
    断面3电厂291.495036.34501.372.501
    电厂397.509942.77986.007.501
    断面4电厂397.509942.77986.0010.0

    Table 1.  Weight table of output limitation of power plant for each section

    首先将各电厂发电计划初始值设置为出力预测值,断面功率初始值也由电厂的出力预测值计算,从内层到外层的优先顺序搜索越限断面,判断出断面3、断面2、断面1越限,如图4图7所示。从最内层即断面3开始重新分配出力,保持断面接近稳定极限值,同一个电厂可属于不同断面,多个断面功率进行控制时,一个电厂存在多次出力受限分配的情况。各断面控制后的功率如图4图7所示,断面1、3、4均运行在初始功率的下方,断面2在出力受限时稳定在极限值运行,整体实现了对输电断面的最大化利用。

    Figure 4.  Power curve of the section 1

    Figure 5.  Power curve of the section 2

    Figure 6.  Power curve of the section 3

    Figure 7.  Power curve of the section 4

    根据表1综合得分计算出各电厂受限的出力,如表2所示,仅列举新能源出力受限的时段,考虑调度公平性与考虑装机容量相比较,光伏电站在白天时段限制的有功功率有所减少,风电受限出力有所增加。白天时段风电给光伏留出一点裕度,夜间光伏不发电,风电可占用光伏的全部发电空间,一定程度上合理利用了风光资源,体现了多能源电厂出力受限的调度公平性。各电厂最终发电计划曲线如图8图10所示。

    时间电厂1受限出力/MW电厂2受限出力/MW电厂3受限出力/MW
    按装机容量考虑调度公平性按装机容量考虑调度公平性按装机容量考虑调度公平性
    11:300.020.050.040.020.260.24
    11:450.230.780.530.223.673.43
    12:000.471.591.120.477.446.97
    12:150.551.881.340.568.778.22
    12:300.592.011.690.7810.9310.43
    12:450.602.031.870.8911.9411.48
    13:000.602.062.051.0112.9312.51
    13:150.612.091.900.9112.2011.72
    13:300.622.111.710.7811.1310.57
    13:450.602.051.380.579.188.54
    14:000.612.061.360.569.188.52
    14:150.511.711.100.467.597.03
    14:300.371.250.780.325.515.09
    14:450.290.960.580.244.213.88
    15:000.170.580.330.132.522.31
    15:150.110.350.190.081.531.40
    15:300.090.310.160.071.371.25

    Table 2.  Table of output limitation of power plant for each section

    Figure 8.  Power curve of power plant 1

    Figure 9.  Power curve of power plant 2

    Figure 10.  Power curve of power plant 3

  • 本文提出从内层到外层的优先级顺序逐步降低搜索越限断面的算法模型,提出基于信息熵的出力受限分配策略,为解决复杂断面和混合新能源发电调度控制难题提供了新方法,实现了断面最大化利用和清洁能源能源最大化消纳,同时也保证了电厂日前发电计划的公平性,具有较强的实用意义。

    该方法已实际应用于某地区电网日前96时段发电计划,取得较好的日前发电计划结果,但仍需进一步完善新能源混合并网发电的调度公平性指标体系。在后续的研究工作中,可以契合未来电力市场发展方向,进一步建立包括发电成本及电力市场机制等在内的调度公平性指标体系。

Reference (16)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return