• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue S1
Jul.  2021
Turn off MathJax
Article Contents

REN Hao,MA Zhaorong,LI Cong,et al.Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing[J].Southern Energy Construction,2021,08(增刊1):65-69. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.010
Citation: REN Hao,MA Zhaorong,LI Cong,et al.Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing[J].Southern Energy Construction,2021,08(增刊1):65-69. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.010

Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.010
  • Received Date: 2020-12-30
  • Rev Recd Date: 2021-04-20
  • Publish Date: 2021-07-30
  •   Introduction  In order to explore the reasonable wet towing method of three tube jacket foundation and study its self-floating wet-towing floating characteristics,  Method  the numerical simulation software Moses was used to analyze the static stability and dynamic response of soild-floating body and air-floating body in towing for a certain offshore wind turbine three-bucket jacket foundation in this paper. The differences of static stability and towing characteristics between soild-floating body and air-floating body of three bucket foundation for offshore wind turbine under the influence of the same environmental load were clarified.  Result  The results show that the static stability of air-floating structure is better than that of solid-floating structure, but the motion response amplitude of solid-floating body is lower than that of air-floating structure.  Conclusion  We demonstrate the feasibility of the method and it provides some guidance for further application.
  • [1] 罗如意,林晔,钱野. 世界风电产业发展综述 [J]. 可再生能源,2010,28(2):14-17.

    LUOR Y, LINY, QIANY. The development and prospects of world wind power industry [J]. Renewable Energy Resources, 2010, 28(2):14-17.
    [2] 闵兵,王梦川,傅小荣,等. 海上风电是风电产业未来的发展方向——全球及中国海上风电发展现状与趋势 [J]. 国际石油经济,2016,24(4):29-36.

    MINB, WANGM C, FUX R, et al. Offshore wind power as the development trend of wind industry—developments of global offshore wind power [J]. International Petroleum Economics, 2016, 24(4): 29-36.
    [3] 卢启付,余超耘,王红星,等. 中国海上风电检测与认证标准体系研究 [J]. 广东电力,2020,30(3):1-6.

    LUQ F, YUC Y, WANGH X, et al. Offshore wind power testing and certification standard system in China [J]. Guangdong Electric Power,2020,30(3):1-6.
    [4] 尚景宏,罗锐,张亮. 海上风电基础结构选型与施工工艺 [J]. 应用科技,2009,36(9):6-10.

    SHANGJ H, LUOR, ZHANGL. Foundation structure selection and construction process for offshore wind turbines [J]. Applied Science and Technology, 2009, 36(9): 6-10.
    [5] 黄维平,刘建军,赵战华. 海上风电基础结构研究现状及发展趋势 [J]. 海洋工程,2009,27(2):130-134.

    HUANGW P, LIUJ J, ZHAOZ H. The state of the art of study on offshore wind turbine structures and its development [J]. The Ocean Engineering, 2009, 27(2):130-134.
    [6] 刘博,裴爱国. 桶型基础气浮拖航特性综述 [J].南方能源建设,2020,7(2):81-90.

    LIUB, PEIA G. Review of air-floating towing characteristics of bucket foundation [J]. Southern Energy Construction, 2020, 7(2):81-90.
    [7] 阮胜福,刘玉玺,宋广然,等. 深水导管架拖航分析研究 [J]. 化学工程与装备,2017(2):126-129.

    RUANS F, LIUY X, SONGG R, et al. Towing analysis of deep-water jacket [J]. Chemical Engineering & Equipment, 2017(2):126-129.
    [8] 刘宪庆,赵明阶,张浦阳,等. 大直径多筒型基础的运动特性研究 [J]. 太阳能学报,2020,41(9):359-365.

    LIUX Q, ZHAOM J, ZHANGP Y, et al. Studies on motion characteristics of multi-bucket foundations with large diameter [J]. Acta Energiae Solaris Sinica, 2020, 41(9):359-365.
    [9] 杨光,李洁,刘旭平,等. 基于MOSES的张力腿平台干拖运输过程稳性分析 [J]. 石油和化工设备,2019,22(6):15-18.

    YANGG, LIJ, LIUX P, et al. Stability analysis of TLP in dry towing transportation process based on Moses [J]. Petro & Chemical Equipment, 2019, 22(6):15-18.
    [10] 闵巧玲. 复合筒型基础稳性及拖航运动特性分析 [D]. 天津:天津大学,2018.

    MINQ L. Analysis of stability and towing motion characteristics of composite bucket foundation [D]. Tianjin: Tianjin University, 2018.
    [11] CHENY P, LIZ W, ZHANGC K, et al. Numerical study of a round buoyant jet under the effect of JONSWAP random waves [J]. China Ocean Engineering, 2012, 26(2):235-250.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(13)  / Tables(2)

Article Metrics

Article views(320) PDF downloads(61) Cited by()

Related

Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing

doi: 10.16516/j.gedi.issn2095-8676.2021.S1.010

Abstract:   Introduction  In order to explore the reasonable wet towing method of three tube jacket foundation and study its self-floating wet-towing floating characteristics,  Method  the numerical simulation software Moses was used to analyze the static stability and dynamic response of soild-floating body and air-floating body in towing for a certain offshore wind turbine three-bucket jacket foundation in this paper. The differences of static stability and towing characteristics between soild-floating body and air-floating body of three bucket foundation for offshore wind turbine under the influence of the same environmental load were clarified.  Result  The results show that the static stability of air-floating structure is better than that of solid-floating structure, but the motion response amplitude of solid-floating body is lower than that of air-floating structure.  Conclusion  We demonstrate the feasibility of the method and it provides some guidance for further application.

REN Hao,MA Zhaorong,LI Cong,et al.Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing[J].Southern Energy Construction,2021,08(增刊1):65-69. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.010
Citation: REN Hao,MA Zhaorong,LI Cong,et al.Research on Stability Control of Offshore Wind Power Multi Jacket Foundation During Wet Towing[J].Southern Energy Construction,2021,08(增刊1):65-69. doi:  10.16516/j.gedi.issn2095-8676.2021.S1.010
  • OA:https://www.energychina.press/

    开放科学(资源服务)二维码:

    2095-8676 © 2021 Energy China GEDI. Publishing services by Energy Observer Magazine Co., Ltd. on behalf of Energy China GEDI. This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

    随着各国能源结构的转型,清洁能源在总能源中的占比逐渐增大,特别是海上风能的开发利用1。风能具有清洁、近乎无尽及分布广泛等特性,是最具发展前景的清洁能源之一2。目前海上风电正逐渐向深远海方向发展,传统基础形式如单桩基础、高桩承台基础及复合筒形基础等适用性下降,成本增加。而导管架基础自身重量轻,结构刚度大,对深海的适用性较高3-5,传统导管架基础底部为多桩结构,其施工过程难度大,具有一定的局限性。近年来,采用吸力式多筒基础的导管架结构应运而生,大大降低了在沉放安装施工方面的成本,然而由于底部吸力筒直径及结构整体根开较大,其干拖会受到船型的限制,同时多筒结构具有一定的自浮稳性,可以实现湿拖,因此对其湿拖浮运特性进行研究是十分有必要的6-8。本文针对某海域三筒导管架工程,如图1所示,分别采用实浮体及气浮体两种方案的三筒导管架基础在自浮拖航过程中的运动特性进行了研究。

  • 通过数值模拟软件Moses建立三筒导管架基础模型,分别考虑实浮体及气浮体两种方案,对处在静水及拖航过程中的三筒导管架基础进行稳性性分析。在模型中将拖缆绳一端与基础相接,另一端固定,通过在海域中施加一个与拖航方向相反的流速来模拟基础的拖航过程9

    分别建立气浮及实浮模型:实浮结构底端不开孔,在筒内设置压载水;气浮结构在模型底部不封闭,水可以自由通过下部开孔。模型如图2所示,尺寸如表1所示。

    Figure 2.  Numerical models

    Figure 2.  Numerical models

    筒高/m筒径/m结构总高度/m结构重心高度/m结构质量/t
    12.6612.660.14筒底以上24 m1 535.7

    Table 1.  Model size

  • 三筒导管架基础在波浪中运动可看做具有6个自由度的刚体运动,可通过运动分量ζ=(x,y,z,rx,ry,rz)表示,分别代表结构的纵荡、横荡、垂荡、横摇、纵摇、艏摇的运动。三筒导管架基础运动响应方程可以通过刚体运动方程满足下式:

    -ω2(M+a)-iω(B+b)+(K+C)ξ=fex ((1))

    式中:ω为波浪频率;i是虚数单位;M为三筒导管架基础质量矩阵;a为附加质量矩阵;B为系统阻尼矩阵;b为辐射阻尼矩阵;K为三筒导管架基础内部气体刚度矩阵;C为三筒导管架基础恢复力矩阵;ξ为物体运动响应幅值;fex为激振力。

  • 根据水面起伏的初始情况与波动场的初始速度分布情况,初始条件满足下式:

    η(x,y,t)t=0=η(x,y) ((2))
    Φ(x,y,z,t)t=0=g(x,y,z) ((3))

    式中:η(x,y)为初始水面起伏;g(x,y,z)为波动场初始速度分布10

  • JONSWAP谱是1968年英国、美国、荷兰、德国联合发起的“北海波浪计划”(Joint North Sea Wave Project),开展为期1年的海浪观察统计工作,这是迄今为止最系统的一次海浪观测工作,提出适用于风程被限定的JONSWAP谱11,表达式如下:

    S(ω)=αg2ω-5exp-54ωmω4γexp-ω-ωm22σ2ωm2 ((4))

    式中:α为能量尺度参量,取α=0.076gx/U2-0.22x为风程(m);U为平均风速(m/s);ωm为谱峰频率(Hz),ωm=22(g/U)(gx/U2)-0.33γ为峰值提升因子,原观测值在1.5~6之间,平均值取3.3;σ为峰形参数,当ωωm时,σ=0.07,当ω>ωm时,σ=0.09

  • 分别对相同条件下的实浮结构及气浮结构进行静稳性分析。利用Moses分析三筒导管架基础的回复力臂、RAO(response amplitude operator)进行对比分析。

    静稳曲线上升段部分为相对平稳的位置,下降段部分为不稳定平衡部分,而当力臂减小到0以下时,整个结构会加速倾覆。因此通过倾角的值可以判断结构是否安全及稳定。如图3所示,对实浮体,在倾角达到17°左右处,力矩变为负值,也就意味着大于17°时,结构将不提供恢复力矩,整个结构完全失去静水稳定性。而对气浮结构,在倾角达到21.4°左右处,力矩变为负值,气浮结构失去静水稳定性。

    Figure 3.  Recovery arm

    图4中可以看出,对实浮结构,在周期为7 s时的垂荡响应达到峰值,垂荡幅值达到1.1 m;气浮结构同样在在周期为7 s时的垂荡响应最大,垂荡幅值达到1.3 m。根据图5,三筒导管架基础运输模型的纵摇响应曲线有明显的峰值,实浮结构及气浮结构分别在12.2 s、12.5 s达到纵摇幅值,实浮体幅值为8.0°,气浮体为7.9°。

    Figure 4.  Heave amplitude

    Figure 5.  Pitch amplitude

  • 将相同条件下三筒导管架基础实浮结构和气浮结构在的浮运性态进行对比,波高为1 m,波浪周期为10 s,顺浪拖航,拖缆力为40 t。

    图6图7可以看出,模型重心点处的拖航速度随波浪周期而振荡,实浮体重心点拖航速度峰值为1.85 m/s,而气浮体重心点拖航速度峰值为1.93 m/s。法兰面的纵向速度,实浮体略小于气浮体,实浮体为2.84 m/s,气浮体为2.98 m/s。

    Figure 6.  Towing speed of center of gravity

    Figure 7.  Longitudinal velocity of flange face

    图8图9可以发现,实浮体与气浮体法兰面垂荡运动相近,其最大垂荡速度分别为0.71 m/s及0.64 m/s,垂荡加速度峰值均为0.53 m/s2

    Figure 8.  Heave velocity of flange face

    Figure 9.  Heave acceleration of flange face

    图10图11可以看出,在浮运过程中,气浮体的法兰面纵摇角与纵摇加速度明显大于实浮体,气浮体法兰面纵摇角为3.82°,纵摇角加速度为0.82 m/s2,实浮体法兰面纵摇角为2.84°,纵摇角加速度为0.63 m/s2

    Figure 10.  Pitch angle of flange face

    Figure 11.  Pitch acceleration of flange

    综上,不同吃水深度下实浮体和气浮体运动响应幅值对比如表2所示。

    参数实浮体气浮体
    重心点拖航速度/(m·s-11.851.93
    法兰面纵向速度/(m·s-12.842.98
    法兰面垂荡速度/(m·s-10.710.64
    法兰面垂荡加速度/(m·s-20.530.53
    法兰面纵摇角/(º)2.843.82
    法兰面纵摇加速度/(º·s-10.630.82

    Table 2.  Comparison of motion response amplitudes of solid and air-floating bodies at different drafts

  • 本文基于海上风电三筒导管架基础,采用数值模型软件MOSES进行了浮运分析,考虑了相同条件下实浮结构及气浮结构的静稳性及浮运特性,结果表明:

    1)与实浮体相比,气浮体的回复力臂曲线消失角更大,静稳性较好。

    2)在浮运特性方面,实浮体的重心点拖航速度、法兰面纵向速度和纵摇角幅值均小于气浮体,垂荡运动两种结构差别较小,纵摇运动相差较大,整体来看,实浮体的浮运稳性高于气浮体。

Reference (11)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return