• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 9 Issue 1
Mar.  2022
Turn off MathJax
Article Contents

WANG Huaan,WANG Zhanhua,ZHENG Wencheng,et al.Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power[J].Southern Energy Construction,2022,09(01):29-33. doi:  10.16516/j.gedi.issn2095-8676.2022.01.004
Citation: WANG Huaan,WANG Zhanhua,ZHENG Wencheng,et al.Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power[J].Southern Energy Construction,2022,09(01):29-33. doi:  10.16516/j.gedi.issn2095-8676.2022.01.004

Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power

doi: 10.16516/j.gedi.issn2095-8676.2022.01.004
  • Received Date: 2021-06-01
  • Rev Recd Date: 2021-08-19
  • Publish Date: 2022-03-25
  •   Introduction  With the accelerated evolution of the national energy structure, offshore wind power will enter a period of rapid and stable development. At present, the development of offshore wind power near the shore of many provinces in China is nearly completed, and the offshore wind power is gradually developed to the offshore deep water area and will expand to a large scale. Offshore wind power in deep water areas has higher technical requirements for marine geotechnical investigation, and marine geotechnical investigation vessels and equipment need to be professional. But the number of large scale professional marine geotechnical investigation platforms in China is limited and they mainly serve the national marine resource exploration and scientific research work. They are rarely used for offshore wind power geotechnical investigation and the investigation costs are high. The traditional investigation mode of modified marine engineering (cargo) vessels with conventional drilling equipment is no longer suitable for offshore deep water area, nor for marine investigation operations in the short window period. Therefore, it is necessary to conduct in-depth research on the technology of marine geotechnical investigation platform.  Method  Through the research on the domestic marine geotechnical investigation vessel platform and exploration equipment, a comprehensive comparative analysis was carried out on their applicable water depth, ability to resist wind and wave, operation efficiency and investigation quality. According to the geotechnical investigation characteristics of offshore wind power and the sea condition of its development and utilization, the construction ideas and schemes of offshore geotechnical investigation platform for offshore wind power in deep water areas were proposed.  Result  The investigation practice of several offshore wind power projects has proved that the construction scheme of marine geotechnical investigation platform proposed in this paper can be applied to offshore deep water area operation, and can make full use of the 24-48 hour window period of marine investigation.  Conclusion  The scheme proposed in this paper is reasonable, which can effectively improve investigation efficiency, ensure the investigation progress and reduce investigation costs.
  • [1] 毕亚雄, 赵生校, 孙强, 等. 海上风电发展研究 [M]. 北京: 中国水利水电出版社, 2017.

    BIY X, ZHAOS X, SUNQ, et al. Research on the development of offshore wind power [M]. Beijing: China Water & Power Press, 2017.
    [2] 胡建平, 李孝杰. 岩土工程水陆两栖勘察平台设计 [J]. 岩土工程技术, 2019, 33(1): 1-5+13. DOI:  10.3969/j.issn.1007-2993.2019.01.001.

    HUJ P, LIX J. Design of geotechnical amphibious survey platform [J]. Geotechnical Engineering Technique, 2019, 33(1): 1-5+13. DOI:  10.3969/j.issn.1007-2993.2019.01.001.
    [3] 丁加宏, 周永. 浅析海上几种工程勘探平台的应用 [J]. 西部探矿工程, 2014, 26(6): 61-62+66. DOI:  10.3969/j.issn.1004-5716.2014.06.022.

    DINGJ H, ZHOUY. Analysis of the application of several engineering platforms [J]. West-China Exploration Engineering, 2014, 26(6): 61-62+66. DOI:  10.3969/j.issn.1004-5716.2014.06.022.
    [4] 胡建平, 赵磊. 船载桁架式勘探双平台设计 [J]. 水运工程, 2014(492): 45-49. DOI:  10.3969/j.issn.1002-4972.2014.06.010.

    HUJ P, ZHAOL. Design of shipborne truss exploration double platform [J]. Port & Waterway Engineering, 2014(492): 45-49. DOI:  10.3969/j.issn.1002-4972.2014.06.010.
    [5] 欧阳志强, 雷统平, 田爱民. 海洋钻机液压波浪补偿装置: CN201420210280.4 [P]. 2014-09-17.

    OUYANGZ Q, LEIT P, TIANA M. Hydraulic wave compensation device for offshore drilling fig: CN201420210280.4 [P]. 2014-09-17.
    [6] 顾小双. 波浪补偿钻探设备在海洋岩土工程勘察中的应用 [J]. 上海建设科技, 2020, 27(3): 12-14. DOI:  10.3969/j.issn.1005-6637.2020.03.004.

    GUX S. Application of wave compensation drilling equipment in marine geotechnical engineering investigation [J]. Shanghai Construction Science & Technology, 2020, 27(3): 12-14. DOI:  10.3969/j.issn.1005-6637.2020.03.004.
    [7] 贺明鸣, 李辉, 桂满海. “海洋石油707”综合勘察船的总体设计 [J]. 船舶与海洋工程, 2017, 33(3): 27-30+61. DOI:  10.14056/j.cnki.naoe.2017.03.006.

    HEM M, LIH, GUIM H. General design of the multi-functional survey vessel Hai Yang Shi You 707 [J]. Naval Architecture and Engineering, 2017, 33(3): 27-30+61. DOI:  10.14056/j.cnki.naoe.2017.03.006.
    [8] 翟立伟. 海洋自升式钻井平台插桩风险分析 [J]. 化学工程与装备, 2019, 48(12): 71-72. DOI:  10.19566/j.cnki.cn35-1285/tq.2019.12.032.

    ZHAIL W. Risk analysis of marine self-rising drilling platform [J]. Chemical Engineering & Equipment, 2019, 48(12): 71-72. DOI:  10.19566/j.cnki.cn35-1285/tq.2019.12.032.
    [9] 戴兵, 段梦兰, 宋林松, 等. 自升式钻井平台穿刺分析 [J]. 科技导报, 2010, 28(17): 63-66.

    DAIB, DUANM L, SONGL S, et al. Investigation of the punch-through in jack-up rigs [J]. Science & Technology Review, 2010, 28(17): 63-66.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Tables(2)

Article Metrics

Article views(257) PDF downloads(75) Cited by()

Related

Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power

doi: 10.16516/j.gedi.issn2095-8676.2022.01.004

Abstract:   Introduction  With the accelerated evolution of the national energy structure, offshore wind power will enter a period of rapid and stable development. At present, the development of offshore wind power near the shore of many provinces in China is nearly completed, and the offshore wind power is gradually developed to the offshore deep water area and will expand to a large scale. Offshore wind power in deep water areas has higher technical requirements for marine geotechnical investigation, and marine geotechnical investigation vessels and equipment need to be professional. But the number of large scale professional marine geotechnical investigation platforms in China is limited and they mainly serve the national marine resource exploration and scientific research work. They are rarely used for offshore wind power geotechnical investigation and the investigation costs are high. The traditional investigation mode of modified marine engineering (cargo) vessels with conventional drilling equipment is no longer suitable for offshore deep water area, nor for marine investigation operations in the short window period. Therefore, it is necessary to conduct in-depth research on the technology of marine geotechnical investigation platform.  Method  Through the research on the domestic marine geotechnical investigation vessel platform and exploration equipment, a comprehensive comparative analysis was carried out on their applicable water depth, ability to resist wind and wave, operation efficiency and investigation quality. According to the geotechnical investigation characteristics of offshore wind power and the sea condition of its development and utilization, the construction ideas and schemes of offshore geotechnical investigation platform for offshore wind power in deep water areas were proposed.  Result  The investigation practice of several offshore wind power projects has proved that the construction scheme of marine geotechnical investigation platform proposed in this paper can be applied to offshore deep water area operation, and can make full use of the 24-48 hour window period of marine investigation.  Conclusion  The scheme proposed in this paper is reasonable, which can effectively improve investigation efficiency, ensure the investigation progress and reduce investigation costs.

WANG Huaan,WANG Zhanhua,ZHENG Wencheng,et al.Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power[J].Southern Energy Construction,2022,09(01):29-33. doi:  10.16516/j.gedi.issn2095-8676.2022.01.004
Citation: WANG Huaan,WANG Zhanhua,ZHENG Wencheng,et al.Research on Vessel Platform Technology for Geotechnical Investigation of Guangdong Offshore Wind Power[J].Southern Energy Construction,2022,09(01):29-33. doi:  10.16516/j.gedi.issn2095-8676.2022.01.004
  • “双碳”背景下国家能源结构将加速演变,风电及光伏等清洁能源将是发展最快的电源类型,海上风电将进入快速稳定开发期。

    自2010年起我国海上风电进行了大规模开发。江苏、广东、福建等地多个海上风电投产,现海上风电并网装机容量已经排名全球前三,仅次于英国和德国。随着江苏、广东等地近岸海上风电开发完成,海上风电逐步向近海深水区开发并将大规模发展。

    近海深水区海上风电涉及的海域距岸大于50 km,水深为40~80 m。和近岸海域相比,适配于深水区的风机基础型式将更加多样化,海洋岩土勘察技术要求也将提高,海洋岩土勘察船只平台和设备要求趋于专业化,海洋勘察工艺和设备的改进升级已是必然。

  • 广东海域隶属南海,多属于亚热带季风带,风向有明显的季节性变化,冬季盛行东北风,夏季盛行西南风。广东海域近岸潮流均以带有部分旋转性质的往复流为主,主轴基本平行于海岸线,海浪主要是由季风和热带气旋引起,其分布和变化又主要受季风支配。东北季风期盛行东北向的浪和涌(50%以上),西南季风期则盛行西南向的浪和涌(50%以上)。东北季风期平均波高大于西南季风期。各海洋站观测平均波高为0.6~1.3 m,最大波高为3.9~9.8 m,平均周期为3.5~5.8 s,最大周期为6.5~14.3 s。大部分风暴潮是由热带气旋引起,主要集中于每年6月至10月。粤东海区风暴潮位为1.6~2.58 m,最大增水3.14 m;珠江口风暴潮位为2.00~3.63 m,最大增水2.50 m;粤西海区风暴潮位2.00~5.94 m,最大增水5.90 m1

    广东海域海洋勘察窗口期主要集中于每年3月至10月,其中6月至10月受热带气旋(台风)影响,窗口期较3月至5月少。进入冬季后,受东北季风影响,窗口期大大减少。根据广东省多个海上风电项目经验,ECMWF推出的ERA5再分析资料数据对广东海域风浪要素具备较好的代表性,利用其评估海上勘察窗口期具有较好的适用性。以粤东某海上风电项目为例,利用ERA5的中尺度数据进行分析。根据ERA5再分析资料近20年的有效波高、风速数据,筛选有效波高≤1.5 m,平均风速≤6级,周期≤8 s的时刻,对冬季作业时间段(11月至2月)的窗口期进行逐月分析统计,如表1表2所示。

    月份波高≤1.5 m时次/h风速≤10.8 m/s时次/h窗口期/个
    连续24 h作业连续48 h作业连续72 h作业
    11月530646421
    12月507648310
    1月6191289420
    2月6141411631
    合计2 2703 9941782

    Table 1.  Statistical analysis of operating window period (multi-year average)

    月份历史最少窗口期/个历史最多窗口期/个
    连续24 h作业连续48 h作业连续72 h作业连续24 h作业连续48 h作业连续72 h作业
    11月100732
    12月100531
    1月000542
    2月210764
    合计41024169

    Table 2.  Statistical analysis on extremum years of operating window period

    表1表2可知,冬季广东海域平均连续72 h作业期少,平均0.5个/月,历史极年情况下,最少持续多月未出现连续72 h作业窗口期,最多作业窗口期平均为2.25个/月;冬季平均连续48 h作业期相对较少,平均2个/月,历史极年情况下,多月仅出现1次48 h作业期,最多作业窗口期平均为4个/月;冬季平均连续24 h作业窗口期相对较多,平均4.25个/月,历史极年情况下,每月出现1次24 h作业窗口期,最多作业窗口期平均为6个/月。

    由上述分析,冬季广东海域连续72 h作业窗口期少且不稳定出现,48 h作业窗口期相对较少,常规状况为2个/月,24 h作业窗口期相对较多。

  • 根据调查研究,国内海上风电岩土勘察在潮汐带多采用海陆两栖勘察设备和笩式平台搭配传统立轴钻机2-3;在沿海及近海浅水区多采用液压自升降钻井平台或海洋工程(货)船搭配传统立轴钻机和孔压静力触探(Piezocone penetration Test,CPTU);近海深水区除采用专业海洋勘察船只设备外,多采用改造海洋工程(货)船搭接海洋钻机。各类海洋勘察船只或平台和海洋勘察设备的特点如下:

    1)海陆两栖勘察设备或笩式平台和传统立轴钻机:适用潮间带和0.8 m内涌浪,受潮汐影响,作业效率较低。

    2)液压自升降钻井平台搭接陆地钻机和CPTU设备:适用水深多为20 m以内,部分平台设计适用水深为35 m和40 m,如华东2号、华东3号平台和永强11号平台,个别适用水深55 m,如海勘9号平台、华东306平台和三峡101平台;钻探平台多为无动力平台,个别带有自动力和DP-1动力定位系统,如华东306平台和三峡101平台。平台搭接吊臂、传统立轴钻机和CPTU系统。钻探平台升起时,可不受波浪影响作业,但平台升降及其拖带转运时,受海况影响大,作业效率一般。

    3)海洋工程(货)船和钻机设备:根据船只类型和大小用于沿海或近海作业。搭接传统立轴钻机设备时,适用1.5 m内浪涌,作业效率一般,若对钻机设备和工作改进,作业效率将有较大提高,如中交三航院自创双卷扬钻机设备4;搭接具波浪补偿功能海洋钻机设备时,如HD500、HD600和HD1000海洋钻机(有效补偿范围±1.5 m)等5-6,适用2.0 m内涌浪,作业效率较高。

    4)海洋专业勘察船只设备:适用于近海各类水深作业,具DP2动力定位系统,可快速定位并较好适配风向、涌浪等。船只搭配波浪补偿的钻探及CPTU系统(有效补偿范围±1.5 m),可实施井下式CPTU和静压高质量取样。船只和设备适用2.0 m内波浪,作业效率高,为常规海洋勘察船的2倍。国内该类海洋勘察船只和设备资源少,多用于油气等资源勘探和海洋科考,较少用于海上风电勘察。

    按现行国家规范要求,国内海上风电依据风机和升压站基础型式布设勘探孔,根据各项目技术要求,分别采用以钻探取样结合标准贯入试验为主、CPTU为辅模式和采用以CPTU为主、钻探取样为辅模式进行勘察。前者模式实施对勘察船只、平台及设备要求较低,可通过租赁海洋工程(货)船或平台搭接钻机设备较易实现,CPTU可采用海床式和井下交替式,为国内海上风电常规勘察模式;后者模式对勘察船只、平台及设备要求高,需采用专业海洋勘察船只、平台及设备实施,CPTU实施采用井下交替式,为国外海上风电勘察主流模式,在我国华东地区和广东近海深水区业已广泛应用。

    随着国内海上风电技术的发展,以及海上风电项目投资的控制,国内海上风电勘察要求趋于采用CPTU辅以钻孔取样模式实施岩土勘察,各风机和海上升压站均采用井下交替式CPTU,伴随用海水水深增加和海底地层性质变差,勘察深度由70 m增加至90~120 m。目前,国内仅南海503、海油7077、海油708、海油709船和海洋地质十号船配备具波浪补偿的井下式CPTU设备,可在国内近海海域广泛实施井下交替式CPTU。华东地区因第四系沉积层厚度大,海况较好,水深较浅,该地区海上风电常采用升降式平台搭接陆上钻机及CPTU实施井下交替式CPTU。广东沿海受限于海况变化大,水深较深,常采用专业海洋勘察船只设备实施CPTU。

  • 考虑广东近海深水区海上风电开发规划和广东海况变化大且窗口期短等特征,适用广东近海深水区的海洋勘察自升式钻井平台少且费用造价高,运行维护年费用高昂,平台作业机动性较差,即便自动力平台往返工区,仍需拖船托运,相隔周期长的两作业窗口期,需长时在海域待命,平台补给存在困难。另外,平台升降过程中,如海底地层复杂或操控不当,腿靴易发生刺穿而引发平台倾覆事故8-9

    基于上述原因,广东近海深水区海上风电岩土勘察首选采用专业海洋勘察船只搭配海洋勘察设备。综合广东海域特征和海上风电勘察特点,专业海洋勘察船只设备建设思路如下:

    1)海洋勘察船只:分为沿海航区、近海航区和无限制航区船只,沿海航区船只适用离岸20 n mile内海域,近海航区船只适用离岸200 n mile内海域,无限制航区船只不限制海域使用。海洋十号、海油707、海油708和海油709等均为不限制船只。国内海上风电为近海工程,海洋勘察船只可选用近海勘察船只,考虑人员配置和节省费用,可选用500~3 000 t总吨位船只,船上人员根据船只大小配备,并应满足《中华人民共和国船舶最低安全配员规则》。船只依据海洋岩土勘察功能建设,除月池、动力驱动区、生活居住区、油料和生活用水等储备区外,搭建土工试验室、船体甲板主要布设钻探系统并堆放材料,设置操控室、吊臂或机械手臂等,钻井系统置于甲板中部,保证设备稳定和安全使用。

    2)海洋勘察设备:可采用波浪补偿钻机系统搭配井下式CPTU,有效波浪补偿为±1.5 m,适用2.0 m高浪涌作业。钻机系统搭配绳索钻探取芯,配备十多吨重的海底基盘,除可较大提高钻探效率、利用静压或单动双层管高质量取样外,还可利用搭接井下式CPTU采集系统,全孔或部分交替式实施CPTU,保证原位试验的可靠性和准确性。

    3)DP定位系统:其利用计算机软件对采集到的周围的环境因素如水流、风速、风向、海浪等,根据位置参照系统(GPS、罗经等)进行汇总计算后不断控制调整船舶或者平台上的各个推力器的大小和方向,从而使得船舶或者平台保持事先设定的位置。在使用过程中可快速自动定位和航向自动保持,较常规勘察船只可节约4~6 h抛锚定位时间,DP定位系统可划分为DP1、DP2、DP3三个等级,越高等级的定位系统其安全性越高,价格也相应越贵。具体条件下,船只搭接DP2级定位系统可满足海洋勘察要求。

    按上述思路搭建海上风电勘察船只设备,在广东可有效利用冬季海洋24~48 h的短窗口期作业,实现短窗口期完成单个80~90 m深的勘探孔。

  • 利用上述技术方案确定海洋勘察船只设备对粤东某海上风电和粤西某近海深水区海上风电勘察勘探孔进行实施,其实施情况概述如下:

    粤东某海上风电距岸25~31 km,水深34~40 m,作业时间为2020年3月至5月,试验孔深80 m和120 m,利用具有DP2定位系统的专业海洋勘察船,采用±1.5 m波浪补偿井下交替式CPTU设备(绳索升降),配备11 t重的海底基盘,完成80 m和120 m孔深用时分别为18 h和36 h。

    粤西某近海深水区海上风电距岸65~75 km,水深43~48 m,作业时间为2021年1月至3月,试验孔深90 m,利用不具DP定位系统的专业海洋勘察船,采用±1.5 m波浪补偿海洋钻机设备,钻井系统搭配绳索钻探取芯,锤击和单动双层管取样,勘察船在2.0 m内波浪情况下有效作业,完成90 m用时为38~42 h。

    上述风场区勘探孔实施情况充分说明,采用专业勘察船只搭配波浪补偿钻机系统搭配井下式CPTU,利用绳索取芯和海底基盘,可充分利用海洋24~48 h作业窗口期,有效提高勘探效率,保证项目勘察进度,降低勘察成本。

  • 1)针对广东海况变化大且窗口期短的特征,广东近海深水区海上风电首选采用海洋勘察船只搭配海洋勘察设备实施岩土工程勘察,即具有较大灵活性,宜可保证项目实施安全。

    2)海洋勘察船应依据海洋岩土勘察功能建设,搭建土工试验室,并布设月池、动力驱动区、生活居住区、油料和生活用储备区、泥浆搅拌区等,海洋钻探系统应置于甲板中部,保证设备稳定和安全使用。

    3)海洋勘察船可选用近海航区船只,具备经济条件时,可选用无限制航区船只并搭配DP2动力定位系统。

    4)海洋勘察设备可采用波浪补偿钻机系统搭配井下式CPTU,有效波浪补偿不小于±1.5 m,可适用2.0 m高浪涌作业。钻井系统搭配绳索钻探取芯,配备十多吨重的海底基盘,较大提高钻探效率,保证高质量取样和原位试验的可靠准确。

    5)利用本论文推荐的专业海洋勘察船只设备实施海洋岩土勘察作业,可实现全孔绳索钻探取芯、全孔静压取样、全孔井下式CPTU和全孔交替式取样及CPTU,技术先进,与国外先进海洋勘察方法相匹配。

    6)多个海上风电勘察实践证明,按本文提出的海洋岩土勘察平台建设方案,可充分利用海洋24~48 h等短作业窗口期,有效提高勘探效率,保证项目勘察进度,降低勘察成本。

Reference (9)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return