• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 9 Issue 1
Mar.  2022
Turn off MathJax
Article Contents

ZHUANG Zhixiang,GUO Jian,ZHANG Jue,et al.Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering[J].Southern Energy Construction,2022,09(01):96-102. doi:  10.16516/j.gedi.issn2095-8676.2022.01.014
Citation: ZHUANG Zhixiang,GUO Jian,ZHANG Jue,et al.Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering[J].Southern Energy Construction,2022,09(01):96-102. doi:  10.16516/j.gedi.issn2095-8676.2022.01.014

Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering

doi: 10.16516/j.gedi.issn2095-8676.2022.01.014
  • Received Date: 2021-04-30
  • Rev Recd Date: 2021-05-28
  • Publish Date: 2022-03-25
  •   Introduction  Tower weight and foundation concrete quantity are important indexes in transmission line engineering. By comparing the tower weight and foundation concrete quantity of 10 mm, 15 mm, 20 mm, 30 mm and 40 mm ice area typical towers used in YunGui interconnection channel project, this paper explores the influence of ice area on tower weight and foundation concrete quantity.  Method  The components of the tower were analyzed and the relationship between each component and the total weight of the tower was fully understood; Through the comparison and analysis of tower weight and foundation concrete quantity in different ice areas, the relationship between different ice areas and tower weight and foundation concrete quantity was studied.  Result  The analysis shows that for the tension tower, the proportion of the tower body below the variable slope to the total tower weight is the largest; for the tangent tower, the cross arm, the tower body above the variable slope and the tower body below the variable slope all account for a large proportion of the total tower weight; the influence of ice area on the weight of tangent tower is greater than that of tension tower, and the increase of tower weight in 30 mm ice area is the largest; the influence of ice area on the concrete content of tension tower foundation is greater than that of tangent tower, and the increase of concrete content of tower foundation in 30 mm ice area is the largest.  Conclusion  There is a certain proportional relationship between the structural quantities and different ice areas, which can provide a reference for the estimation of the quantities of DC transmission lines in the future.
  • [1] 杨振国, 高培国, 韩彬, 等. 辽南电网冰厚调整对500 kV线路投资的影响分析 [J]. 电力勘测设计, 2018(3): 70-75. DOI:  10.13500/j.cnki.11-4908/tk.2018.03.014.

    YANGZ G, GAOP G, HANB, et al. Analysis of influence caused by adjusted ice thickness on Investigation of 500 kV Transmission Line in Southern Liaoning Province [J]. Electric Power Survey & Design, 2018(3): 70-75. DOI:  10.13500/j.cnki.11-4908/tk.2018.03.014.
    [2] 宋刚, 张彤. 特高压直流输电线路直线塔重覆冰不平衡张力计算 [J]. 电力自动化设备, 2014, 34(7): 119-123. DOI:  10.3969/j.issn.1006-6047.2014.07.020.

    SONGG, ZHANGT. Unbalanced tension calculation of UHVDC transmission lines and suspension towers with heavy ice-coating [J]. Electric Power Automation Equipment, 2014, 34(7): 119-123. DOI:  10.3969/j.issn.1006-6047.2014.07.020.
    [3] 王青峰, 李本良. 接地极线路重冰区直线塔断线张力分析 [J]. 电力勘测设计, 2020(增刊1): 66-70. DOI:  10.13500/j.dlkcsj.issn1671-9913.2020.S1.012.

    WANGQ F, LIB L. Breaking tension analysis on suspension tower of earthing lines in heavy icing area [J]. Electric Power Survey & Design, 2020 (Supp.1): 66-70. DOI:  10.13500/j.dlkcsj.issn1671-9913.2020.S1.012.
    [4] 杨风利, 杨靖波, 张子富. 重覆冰区特高压悬垂型杆塔不平衡张力分析 [J]. 电网技术, 2012, 36(3): 234-240. DOI:  10.13335/j.1000-3673.pst.2012.03.041.

    YANGF L, YANGJ B, ZHANGZ F. Unbalanced tension analysis of tangent towers for UHV transmission lines located at heavy icing area [J]. Power System Technology, 2012, 36(3): 234-240. DOI:  10.13335/j.1000-3673.pst.2012.03.041.
    [5] 钟寅亥. 冰区输电铁塔设计的荷载组合 [J]. 广东输电与变电技术, 2010, 12(1): 65-66. DOI:  10.3969/j.issn.1672-6324.2010.01.022.

    ZHONGY H. Combination of load for transmission tower in ice-coating zone [J]. Guangdong Power Transmission Technology, 2010, 12(1): 65-66. DOI:  10.3969/j.issn.1672-6324.2010.01.022.
    [6] 段辉顺, 刘生奎, 王公阳. 特高压输电线路重冰区荷载及荷载组合研究 [J]. 山西建筑, 2017, 43(26): 44-46. DOI:  10.3969/j.issn.1009-6825.2017.26.024.

    DUANH S, LIUS K, WANGG Y. Study of heavy icing area load and load combination research in UHV transmission line [J]. Shanxi Architecture, 2017, 43(26): 44-46. DOI:  10.3969/j.issn.1009-6825.2017.26.024.
    [7] 林锐, 翁兰溪, 何园丁, 等. 30 mm重冰区±1 100 kV特高压直流线路设计 [J]. 全球能源互联网, 2020, 3(3): 255-263. DOI:  10.19705/j.cnki.issn2096-5125.2020.03.006.

    LINR, WENGL X, HEY D, et al. Design of ±1 100 kV UHVDC transmission line at 30 mm heavy icing area [J]. Journal of Global Energy Interconnection, 2020, 3(3): 255-263. DOI:  10.19705/j.cnki.issn2096-5125.2020.03.006.
    [8] 谭卓敏. 大负荷直流输电线路杆塔的选择与结构优化 [J]. 广东电力, 2012, 25(5): 58-60+111. DOI:  10.3969/j.issn.1007-290X.2012.05.014.

    TANZ M. Selection and structural optimization of poles and towers for high-load DC transmission lines [J]. Guangdong Electric Power, 2012, 25(5): 58-60+111. DOI:  10.3969/j.issn.1007-290X.2012.05.014.
    [9] 汪楚清,侯鹏翔,周磊,等. 输电线路扩底人工挖孔基础设计方法分析 [J]. 宁夏工程技术,2017,16(2):168-172. DOI:  10.3969/j.issn.1671-7244.2017.02.016.

    WANGC Q, HOUP X, ZHOUL, et al. Study for belled manual excavation foundation in transmission line [J]. Ningxia Engineering Technology, 2017, 16(2): 168-172. DOI:  10.3969/j.issn.1671-7244.2017.02.016.
    [10] 李辉, 李高山, 赵鹏飞, 等. 基于不同持力层厚度的大直径人工挖孔扩底桩竖向承载性状研究 [J]. 铁道建筑, 2012(3): 68-71. DOI:  10.3969/j.issn.1003-1995.2012.03.022.

    LIH, LIG S, ZHAOP F, et al. Research on vertical bearing behavior of large diameter manual excavated belled pile based on different bearing layer thickness [J]. Railway Engineering, 2012(3): 68-71. DOI:  10.3969/j.issn.1003-1995.2012.03.022.
    [11] 王俊林, 王复明, 任连伟, 等. 大直径扩底桩单桩水平静载试验与数值模拟 [J]. 岩土工程学报, 2010, 32(9): 1406-1411.

    WANGJ L, WANGF M, RENL W, et al. Horizontal static load test and numerical simulation of single large diameter under-reamed pile [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(9): 1406-1411.
    [12] 郑卫锋, 张天光, 陈大斌, 等. 我国输电线路基础工程现状与研究新进展 [J]. 水利与建筑工程学报, 2020, 18(2): 169-175. DOI:  10.3969/j.issn.1672-1144.2020.02.029.

    ZHENGW F, ZHANGT G, CHEND B, et al. Current status and latest research progress of tower foundation to transmission line in China [J]. Journal of Water Resources and Architectural Engineering, 2020, 18(2): 169-175. DOI:  10.3969/j.issn.1672-1144.2020.02.029.
    [13] 林文. 基于覆冰地区500 kV输电线路抗冰设计探讨 [J]. 通讯世界, 2016(9): 133-135. DOI:  10.3969/j.issn.1006-4222.2016.09.095.

    LINW. Discussion on anti icing design of 500 kV transmission line based on icing area [J]. Telecom World, 2016(9): 133-135. DOI:  10.3969/j.issn.1006-4222.2016.09.095.
    [14] 王佼, 丁莉. 500 KV架空输电线路工程造价主要影响因素分析 [J]. 东北电力大学学报, 2012, 32(5): 9-11. DOI:  10.3969/j.issn.1005-2992.2012.05.004.

    WANGJ, DINGL. Analysising the main impact factors on the build price of the 500 kV power line road engineering [J]. Journal of Northeast Dianli University(Natural Science Edition), 2012, 32(5): 9-11. DOI:  10.3969/j.issn.1005-2992.2012.05.004.
    [15] 肖宇, 杨磊. 山区输电线路常规基础造价对比分析 [J]. 电力勘测设计, 2015(3): 74-80. DOI:  10.3969/j.issn.1671-9913.2015.03.021.

    XIAOY, YANGL. Comparison on common foundation cost of power transmission line in mountain area [J]. Electric Power Survey & Design, 2015(3): 74-80. DOI:  10.3969/j.issn.1671-9913.2015.03.021.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(6)  / Tables(9)

Article Metrics

Article views(195) PDF downloads(30) Cited by()

Related

Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering

doi: 10.16516/j.gedi.issn2095-8676.2022.01.014

Abstract:   Introduction  Tower weight and foundation concrete quantity are important indexes in transmission line engineering. By comparing the tower weight and foundation concrete quantity of 10 mm, 15 mm, 20 mm, 30 mm and 40 mm ice area typical towers used in YunGui interconnection channel project, this paper explores the influence of ice area on tower weight and foundation concrete quantity.  Method  The components of the tower were analyzed and the relationship between each component and the total weight of the tower was fully understood; Through the comparison and analysis of tower weight and foundation concrete quantity in different ice areas, the relationship between different ice areas and tower weight and foundation concrete quantity was studied.  Result  The analysis shows that for the tension tower, the proportion of the tower body below the variable slope to the total tower weight is the largest; for the tangent tower, the cross arm, the tower body above the variable slope and the tower body below the variable slope all account for a large proportion of the total tower weight; the influence of ice area on the weight of tangent tower is greater than that of tension tower, and the increase of tower weight in 30 mm ice area is the largest; the influence of ice area on the concrete content of tension tower foundation is greater than that of tangent tower, and the increase of concrete content of tower foundation in 30 mm ice area is the largest.  Conclusion  There is a certain proportional relationship between the structural quantities and different ice areas, which can provide a reference for the estimation of the quantities of DC transmission lines in the future.

ZHUANG Zhixiang,GUO Jian,ZHANG Jue,et al.Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering[J].Southern Energy Construction,2022,09(01):96-102. doi:  10.16516/j.gedi.issn2095-8676.2022.01.014
Citation: ZHUANG Zhixiang,GUO Jian,ZHANG Jue,et al.Research on the Relationship Between Structural Engineering Quantitie and Multi Ice Area of ± 500 kV DC Tansmission Line Engineering[J].Southern Energy Construction,2022,09(01):96-102. doi:  10.16516/j.gedi.issn2095-8676.2022.01.014
  • 南方电网云贵互联通道工程是世界首个±500 kV三端直流工程。该工程的顺利竣工标志着云南与贵州两省形成电力互联互济综合体,每年可输送云南清洁水电约60亿千瓦时至粤港澳大湾区,将有效助力打赢蓝天保卫战,对促进云南清洁水电消纳、助力粤港澳大湾区建设具有十分重要的作用。该线路具有地质复杂,气象条件恶劣等特点,其设计风速为27 m/s、30 m/s,沿线海拔为700~3 200 m,涉及10 mm、15 mm、20 mm、30 mm、40 mm共5个冰区,其中重冰区占比38.6%。因此,多冰区杆塔的设计是该工程设计的重点任务之一。

    根据对以往工程的统计,杆塔工程及基础工程约占送电线路本体工程造价的50%~70%,杆塔使用条件、水文气象参数、导地线型号和污秽等级等均对其工程量有重要影响。设计覆冰的加重将直接导致工程量的大大增加,其主要体现在塔重和基础混凝土量这两个指标1。对多冰区杆塔的塔重及基础混凝土量进行比对分析,有助于在工程资料不完善的前期阶段,对工程量进行估算,极大地提高方案比选的效率及实现对工程投资的把控。

    国内学者从覆冰所产生的不平衡张力2-4、覆冰荷载组合5-6等多个方向对覆冰工况进行了深入的研究,但至今对于多冰区直流线路的塔重及基础混凝土量的研究较少。本文以云贵互联通道工程新设计的杆塔模块为例,研究塔重及基础混凝土量随冰区变化的趋势,为今后的直流工程杆塔设计提供数据参考。

  • 参考永富直流和金中直流的设计经验,云贵互联通道工程耐张塔和直线塔均采用成熟的干字型塔7,该塔型是直流线路的传统塔型,具有结构布置合理、传力路线简洁、构件受力明确清晰、塔重较轻、运维方便、适用设计条件广,经济性优良等优点。耐张塔塔型、直线塔塔型如图1所示。

    Figure 1.  Shape diagram of the tension tower and the straight tower

    Figure 1.  Shape diagram of the tension tower and the straight tower

    云贵互联通道工程中涉及塔型较多,本文仅选取其中代表性强、应用数量多的杆塔模块进行研究。从模块一到模块五,其设计覆冰依次为10 mm,15 mm,20 mm,30 mm,40 mm,各杆塔模块杆塔信息如表1所示。

    杆塔模块冰区厚度/mm耐张塔项目直线塔项目
    模块一10J101-J104ZA101-ZA105
    模块二15J151-J154ZA151-ZA155
    模块三20(重)J201-J204ZA201-ZA205
    模块四30J301-J302Z301-Z302
    模块五40J401-J402Z401

    Table 1.  Tower module

    经统计,工程实际应用中杆塔的平均呼高为45 m,本文的相关研究均以45 m呼高为例。

  • 云贵互联通道工程途经云南、贵州2省,路径所经区域主要地形地貌为一般山地和高山大岭,沿线主要以砂泥岩、灰岩、玄武岩为主,状况呈现为强风化到微风化。地下水埋藏深,极少塔位受到地下水的影响。

    结合以往工程经验、沿线工程地形、地质特点及运输条件综合考虑,本工程主要采用挖孔基础。该基础能充分发挥原状土的承载性能8-9,减少土石方的开挖,非常有利于环境的保护。且该基础主柱刚度较大,不仅能承受较高的竖向力,在抗水平力方面也有出色的表现10-11,挖孔基础如图2所示。

    Figure 2.  Foundation

    挖孔基础不单具有施工设备简单、成桩质量容易保证等特点,在输电线路工程上也有成熟的计算理论和运行经验,在各类工程中广泛应用12

    综上,本文以强风化地质条件下1.5 m设计露高的挖孔基础为例研究基础混凝土量。

  • 杆塔工程量是工程本体中一项重要的工程指标,其占工程本体造价的40%~50%。设计覆冰对塔重指标有着重要影响13,探究不同冰区与塔重的关系,对快速进行方案比对,投资估算具有重要意义。

  • 直流杆塔一般可分为5个部件,即地线支架、导线横担、变坡以上塔身、变坡以下塔身及塔腿。研究杆塔各部件对杆塔总重的占比,不仅可增强对塔重构成的认识,还可以识别杆塔中对冰区变化较为敏感且占总塔重比例较高的部件,从而为今后的设计优化提供方向。

    分别统计五个模块耐张塔中各部件的重量并对其求平均可得,地线支架约占总塔重的6%;导线横担约占总塔重的15%;变坡以上塔身约占总塔重的17%;变坡以下塔身约占总塔重的42%;塔腿约占总塔重的21%。

    从变化趋势分析,随着设计覆冰加重,地线支架、导线横担、变坡以上塔身三者的塔重占全塔重量的比重增加;而变坡以下塔身、塔腿的塔重占比减小。从所占总重比例分析,变坡以下塔身的占总塔重的比例最大,塔腿所占比例次之。

    耐张塔杆塔部件占总塔重比例如表2所示。

    杆塔模块地线支架导线横担变坡以上塔身变坡以下塔身塔腿
    模块一514144423
    模块二615174221
    模块三615184220
    模块四615194020
    模块五716184019
    均值615174221

    Table 2.  Proportion of tension tower components in total tower weight

    针对耐张塔,由于变坡以下塔身所占比重较大,在设计中可采取优化塔身坡度、比选隔面设置型式等策略以减少塔重。

    分别统计五个模块直线塔中各部件的重量并对其求平均可得,地线支架约占总塔重的4%;导线横担约占总塔重的21%;变坡以上塔身约占总塔重的24%;变坡以下塔身约占总塔重的33%;塔腿约占总塔重的17%。

    从变化趋势分析,随着设计覆冰加重,地线支架、导线横担、变坡以上塔身三者的塔重占全塔重量的比重增加;而变坡以下塔身、塔腿二者的塔重占减小。从所占总重比例分析,变坡以下塔身的占总塔重的比例最大,变坡以上塔身和导线横担均占有较大的比例。

    直线塔杆塔部件占总塔重比例如表3所示。

    杆塔模块地线支架导线横担变坡以上塔身变坡以下塔身塔腿
    模块一421154217
    模块二419184217
    模块三421292917
    模块四422292717
    模块五523302517
    均值421243317

    Table 3.  Proportion of tangent tower components in total tower weight

    针对直线塔其横担,变坡以上塔身及变坡以下塔身均占有较大的比重,在杆塔设计中可采取优化主材分段、调整杆件计算长度等策略以减少塔重。

  • 研究相同冰区中直线塔与耐张塔的塔重关系,可在设计资料较少的工程早期,快速估算塔重,为工程量的估算提供参考。

    同冰区耐张塔重量约为直线塔的1.91倍到2.39倍,平均为2.09倍。随着设计覆冰加重,耐张塔与直线塔塔重之比减小,表明在覆冰加重时,耐张塔塔重的增速小于直线塔。同冰区塔重对比如表4所示。

    模块一J101/ZA101J102/ZA102J103/ZA103J104/ZA104均值
    塔重比2.372.352.382.482.39
    模块二J151/ZA151J152/ZA152J153/ZA153J154/ZA154均值
    塔重比2.092.102.482.22
    模块三J201/ZA201J202/ZA202J203/ZA203J204/ZA204均值
    塔重比1.951.932.012.122.00
    模块四J301/Z301J302/Z302均值
    塔重比1.931.931.93
    模块五J401/Z401均值
    塔重比1.911.91

    Table 4.  Comparison of tower weight in the same ice area

  • 对于涉及多冰区的工程,在前期阶段,需要快速估算各塔型工程量时,各冰区之间塔重的关系则显得尤为重要。

    针对耐张塔,15 mm、20 mm、30 mm、40 mm冰区塔的塔重约为10 mm冰区塔的1.09倍、1.39倍、2.14倍、2.59倍。多冰区耐张塔塔重对比如表5所示。

    项目J151/J101J152/J102J153/J103J154/J104均值
    塔重比1.071.131.101.061.09
    项目J201/J101J202/J102J203/J103J204/J104均值
    塔重比1.361.451.401.331.39
    项目J301/J101J302/J102均值
    塔重比2.052.232.14
    项目J401/J101J402/J102均值
    塔重比2.572.602.59

    Table 5.  Comparison of tower weight of tension tower in multi ice area

    针对直线塔,15 mm、20 mm、30 mm、40 mm冰区塔的塔重约为10 mm冰区塔的1.14倍、1.53倍、2.62倍、3.2倍。多冰区直线塔塔重对比如表6所示。

    项目ZA151/ZA101ZA152/ZA102ZA153/ZA103ZA154/ZA104ZA155/ZA105均值
    塔重比1.211.271.061.041.14
    项目ZA201/ZA101ZA202/ZA102ZA203/ZA103ZA204/ZA104ZA205/ZA105均值
    塔重比1.531.541.521.561.481.53
    项目Z301/ZA101Z302/ZA102均值
    塔重比2.482.752.62
    项目Z401/ZA101均值
    塔重比3.203.20

    Table 6.  Comparison of tower weight of tangent tower in multi ice area

    多冰区塔重变化如图3所示。设计覆冰对耐张塔重量的影响小于直线塔;从10 mm冰区到20 mm冰区塔重增速较慢,30 mm冰区塔重增速突然加大。由于重冰区杆塔需在基本荷载组合的情况下增加不均匀冰和验算冰工况的计算,该工况对较多杆件起控制作用,故塔重变化较大。基于塔重的变化规律,在今后的设计中,应尽量减少重冰区(尤其是30 mm及以上冰区)的线路长度。

    Figure 3.  Variation of tower weight in multi ice area

  • 基础工程量是另一项重要的工程指标,其占工程本体造价的20%~30%14-15,其中最具代表性的指标则是基础混凝土量。影响基础混凝土量的主要因素有基础形式、基础力、地质参数、基础设计露高等。

    下文以强风化地质条件下1.5 m设计露高的挖孔基础为例,结合各塔型的基础力对基础混凝土量进行测算,以探究各冰区杆塔基础混凝土量之间的关系。

  • 研究相同冰区中耐张塔与直线塔基础混凝土量的关系,可大致估算各塔型基础混凝土量,为方案优化及相关工程量估算提供参考。

    同冰区基础混凝土量对比如表7所示,在典型条件下,耐张塔基础混凝土量约为直线塔的2.50倍到6.50倍,平均为4.50倍。随着设计覆冰加重,耐张塔与直线塔基础混凝土量之比增大,表明在覆冰加重时,耐张塔基础混凝土量的增速大于直线塔。

    模块一J101/ZA101J102/ZA102J103/ZA103J104/ZA104均值
    混凝土比2.523.214.384.383.62
    模块二J151/ZA151J152/ZA152J153/ZA153J154/ZA154均值
    混凝土比2.523.694.005.553.94
    模块三J201/ZA201J202/ZA202J203/ZA203J204/ZA204均值
    混凝土比2.643.454.566.464.28
    模块四J301/Z301J302/Z302均值
    混凝土比3.515.354.43
    模块五J401/Z401均值
    混凝土比3.733.73

    Table 7.  Comparison of the quantity of foundation concrete in the same ice area

  • 针对耐张塔,15 mm、20 mm、30 mm、40 mm冰区塔的基础混凝土工程量约为10 mm冰区塔的1.08倍、1.18倍、1.80倍、2.15倍。多冰区耐张塔基础混凝土量对比如表8所示。

    项目J151/J101J152/J102J153/J103J154/J104均值
    混凝土比1.001.150.911.271.08
    项目J201/J101J202/J102J203/J103J204/J104均值
    混凝土比1.051.151.041.481.18
    项目J301/J101J302/J102均值
    混凝土比1.582.021.80
    项目J401/J101J402/J102均值
    混凝土比2.042.252.15

    Table 8.  Comparison of foundation concrete quantity of tension tower in multi ice area

    针对直线塔,15 mm、20 mm、30 mm、40 mm冰区塔的基础混凝土工程量约为10 mm冰区塔的1.00倍、1.00倍、1.18倍、1.38倍。多冰区直线塔基础混凝土量对比如表9所示。

    项目ZA151/ZA101ZA152/ZA102ZA153/ZA103ZA154/ZA104ZA155/ZA105均值
    混凝土比1.001.001.001.001.00
    项目ZA201/ZA101ZA202/ZA102ZA203/ZA103ZA204/ZA104ZA205/ZA105均值
    混凝土比1.001.001.001.001.001.00
    项目Z301/ZA101Z302/ZA102均值
    混凝土比1.141.211.18
    项目Z401/ZA101均值
    混凝土比1.381.38

    Table 9.  Comparison of foundation concrete quantity of tangent tower in multi ice area

    多冰区基础混凝土量变化如图4所示,设计覆冰对耐张塔基础混凝土工程量的影响大于直线塔。针对直线塔,由于其基础力较小,从10 mm冰区到20 mm冰区基础按最小尺寸均设计均可满足需求,故基础混凝土量无变化,而30 mm,40 mm冰区的基础混凝土量逐渐增加。针对耐张塔,从10 mm冰区到20 mm冰区基础混凝土量增速较慢,30 mm冰区基础混凝土量增速突然加大。由于重冰区杆塔需在基本荷载组合的情况下增加不均匀冰和验算冰工况的计算,该工况对基础力起控制作用,导致基础力增大,故基础工程量变化较大。基于基础混凝土量的变化规律,在今后的设计中,应尽量减少重冰区(尤其是30 mm及以上冰区)的线路长度。

    Figure 4.  Variation of foundation concrete quantity in multi ice area

  • 对比图3图4可知,随着设计覆冰的加重,直线塔塔重增速大于耐张塔,耐张塔基础混凝土量的增速却大于直线塔。

    结合本文2.1的结论,直线塔变坡以下塔重占全塔重量的比例小于耐张塔,且横担和变坡以上塔身占总塔重的比例较大。当覆冰厚度增加时,不均匀冰工况成为了直线塔中大量交叉斜材的控制工况,导致了大量的交叉斜材规格加大。故随着设计覆冰的加重,直线塔塔重的增速大于耐张塔。

    耐张塔变坡以下塔重占全塔重量的比例大于直线塔,且不均匀覆冰工况对耐张塔交叉斜材的影响程度小于直线塔,耐张塔塔重的增加主要集中在变坡以下主材部分。杆塔主材的受力与基础力有直接的关系,故随着设计覆冰的加重,耐张塔基础混凝土量的增速大于直线塔。

  • 本文基于云贵互联通道线路工程中多个冰区的典型杆塔,开展同冰区,多冰区的塔重和基础混凝土量分析。总结了冰区变化对塔重,基础混凝土工程量的影响,提出了多冰区直流线路设计的建议。

    1)耐张塔变坡以下塔身占总塔重的比例最大,可采取优化塔身坡度,比选隔面设置型式等策略以减少塔重。直线塔变坡以下塔身的占总塔重的比例最大,变坡以上塔身和导线横担均占有较大的比例,可采取优化主材分段,调整杆件计算长度等策略以减少塔重。

    2)覆冰加重时,耐张塔塔重的增速小于直线塔,相比于其他冰区,30 mm冰区塔重增速猛烈。

    3)覆冰加重时,耐张塔基础混凝土量的增速大于直线塔,相比于其他冰区,30 mm冰区基础混凝土量增速猛烈。

    4)建议在今后的工程中,应尽量减少重冰区(尤其是30 mm及以上冰区)的线路长度。

    5)在方案比选时,可参考相关工程量对路径较短的轻重区方案和路径较长的轻冰区方案进行技术经济比选,找寻更经济的设计方案。

    本文主要探究±500 kV直流线路工程多冰区结构工程量之间的关系,下一步将继续对其经济性进行探究。

Reference (15)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return