• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue 2
Mar.  2023
Turn off MathJax
Article Contents

DING Xiuxiang, LIN Wei, CHEN Kuncan, XIE Huiling. Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 78-85. doi: 10.16516/j.gedi.issn2095-8676.2023.02.011
Citation: DING Xiuxiang, LIN Wei, CHEN Kuncan, XIE Huiling. Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 78-85. doi: 10.16516/j.gedi.issn2095-8676.2023.02.011

Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers

doi: 10.16516/j.gedi.issn2095-8676.2023.02.011
  • Received Date: 2022-07-15
  • Rev Recd Date: 2022-09-01
  • Available Online: 2023-03-13
  • Publish Date: 2023-03-25
  •   Introduction  In order to solve the problem of the short-term heavy load of main transformers in substations caused by the high peak load of the power grid with the relatively reasonable average-load-rate and increasing utilization hours of the substations, delay the construction investment of the power grid and ensure the economic operation of the power grid, a capacity sizing method of energy storage in substations is proposed in this paper, which meets the power supply requirements with N-1 main transformers.   Method  Firstly, a capacity sizing mathematical model of energy storage was built for peak load shaving of the load operation curve and reducing the maximum load rate of the transformer. Then, the capacity sizing economic objective function of lithium ion electrochemical energy storage was constructed to compare the construction investment of lithium ion electrochemical energy storage and main transformer expansion and analyze the economy of energy storage capacity sizing. Finally, in combination with the actual condition of substations, the energy storage capacity and its feasible construction cost in economy is proposed.   Result  Through analysis, with the decreasing of unit cost of lithium ion electrochemical energy storage in the future, the energy storage power can be considered in accordance with the substation capacity of 15% and charging and discharging time of 2 hours. When the unit cost of the energy storage system is decreased to about RMB 1 200/ kWh, the economic advantage of energy storage construction is obvious.   Conclusion  The capacity sizing method of energy storage proposed can solve the problem of short-term heavy load in substations effectively, and has better economy than conventional power transmission and transformation projects.
  • [1] 许志军, 臧鹏程, 白格平, 等. 考虑风储联合运行系统经济性的储能配置优化 [J]. 内蒙古电力技术, 2022, 40(4): 47-53. DOI:  10.19929/j.cnki.nmgdljs.2022.0064.

    XU Z J, ZANG P C, BAI G P, et al. Energy storage configuration optimization considering economy of wind-storage combined operation system [J]. Inner Mongolia Electric Power, 2022, 40(4): 47-53. DOI:  10.19929/j.cnki.nmgdljs.2022.0064.
    [2] 邵建林, 郑明辉, 郭宬昊, 等. 双碳目标下燃煤热电联产机组储能技术应用分析 [J]. 南方能源建设, 2022, 9(3): 102-110. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.012.

    SHAO J L, ZHENG M H, GUO C H, et al. Application analysis of energy storage technology for coal-fired combined heat and power generation under carbon peak and neutrality goal [J]. Southern Energy Construction, 2022, 9(3): 102-110. DOI:  10.16516/j.gedi.issn2095-8676.2022.03.012.
    [3] 张秀钊, 李林耘, 杨玉琴, 等. 考虑需求响应与储能系统的联合调峰优化策略 [J]. 内蒙古电力技术, 2022, 40(4): 68-73. DOI:  10.19929/j.cnki.nmgdljs.2022.0067.

    ZHANG X Z, LI L Y, YANG Y Q, et al. Joint peak shaving optimization strategy considering demand response and energy storage system [J]. Inner Mongolia Electric Power, 2022, 40(4): 68-73. DOI:  10.19929/j.cnki.nmgdljs.2022.0067.
    [4] 李建林, 李雅欣, 周喜超. 电网侧储能技术研究综述 [J]. 电力建设, 2020, 41(6): 77-84. DOI:  10.12204/j.issn.1000-7229.2020.06.010.

    LI J L, LI Y X, ZHOU X C. Summary of research on grid-side energy storage technology [J]. Electric Power Construction, 2020, 41(6): 77-84. DOI:  10.12204/j.issn.1000-7229.2020.06.010.
    [5] 张东辉, 徐文辉, 门锟, 等. 储能技术应用场景和发展关键问题 [J]. 南方能源建设, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.

    ZHANG D H, XU W H, MEN K, et al. Application scenarios of energy storage and its key issues in development [J]. Southern Energy Construction, 2019, 6(3): 1-5. DOI:  10.16516/j.gedi.issn2095-8676.2019.03.001.
    [6] 刘畅, 卓建坤, 赵东明, 等. 利用储能系统实现可再生能源微电网灵活安全运行的研究综述 [J]. 中国电机工程学报, 2020, 40(1): 1-18. doi:  10.13334/j.0258-8013.pcsee.190212

    LIU C, ZHUO J K, ZHAO D M, et al. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids [J]. Proceedings of the CSEE, 2020, 40(1): 1-18. doi:  10.13334/j.0258-8013.pcsee.190212
    [7] 杨俊, 黄际元, 黄珂丽, 等. 基于电网主变重载率的多储能电站规划方法 [J]. 电器与能效管理技术, 2021(12): 34-41. DOI:  10.16628/j.cnki.2095-8188.2021.12.006.

    YANG J, HUANG J Y, HUANG K L, et al. Multi-energy storage power station planning method based on overload ratio of main transformer [J]. Electrical & Energy Management Technology, 2021(12): 34-41. DOI:  10.16628/j.cnki.2095-8188.2021.12.006.
    [8] 朱寰, 程亮, 陈琛, 等. 多重应用场景下的电网侧储能需求评估方法 [J]. 电力建设, 2019, 40(9): 35-42. DOI:  10.3969/j.issn.1000-7229.2019.09.005.

    ZHU H, CHENG L, CHEN C, et al. Assessment method for grid-side storage demand under multiple application scenarios [J]. Electric Power Construction, 2019, 40(9): 35-42. DOI:  10.3969/j.issn.1000-7229.2019.09.005.
    [9] 郭威, 修晓青, 李文启, 等. 计及多属性综合指标与经济性的电网侧储能系统选址配置方法 [J]. 电力建设, 2020, 41(4): 53-62. DOI:  10.3969/j.issn.1000-7229.2020.04.007.

    GUO W, XIU X Q, LI W Q, et al. Siting and configuration methods for grid-side energy storage system considering multi-attribute comprehensive indices and economy [J]. Electric Power Construction, 2020, 41(4): 53-62. DOI:  10.3969/j.issn.1000-7229.2020.04.007.
    [10] 栗峰, 郝雨辰, 周昶, 等. 电网侧电化学储能调度运行及其关键技术 [J]. 供用电, 2020, 37(6): 82-90. DOI:  10.19421/j.cnki.1006-6357.2020.06.013.

    LI F, HAO Y C, ZHOU C, et al. Dispatching operation and key technologies analysis of electrochemical energy storage on grid side [J]. Distribution & Utilization, 2020, 37(6): 82-90. DOI:  10.19421/j.cnki.1006-6357.2020.06.013.
    [11] 高啸天, 匡俊, 楚攀, 等. 化学电源及其在储能领域的应用 [J]. 南方能源建设, 2020, 7(4): 1-10. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.001.

    GAO X T, KUANG J, CHU P, et al. Chemical power sources and their applications in energy storage fields [J]. Southern Energy Construction, 2020, 7(4): 1-10. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.001.
    [12] 陈浩, 孙春顺, 余志勇, 等. 考虑储能的变电站优化规划 [J]. 电力学报, 2014, 29(4): 313-317+321. DOI:  10.13357/j.cnki.jep.002385.

    CHEN H, SUN C S, YU Z Y, et al. Substation optimization planning with energy storage [J]. Journal of Electric Power, 2014, 29(4): 313-317+321. DOI:  10.13357/j.cnki.jep.002385.
    [13] MURTY V V S N, KUMAR A. Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems [J]. Protection and Control of Modern Power Systems, 2020, 5(2): 1-20. DOI:  10.1186/s41601-019-0147-z.
    [14] BAGGU M M, NAGARAJAN A, CUTLER D, et al. Coordinated optimization of multiservice dispatch for energy storage systems with degradation model for utility applications [J]. IEEE Transactions on Sustainable Energy, 2019, 10(2): 886-894. DOI:  10.1109/tste.2018.2853673.
    [15] WATSON J D, WATSON N R, LESTAS I. Optimized dispatch of energy storage systems in unbalanced distribution networks [J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 639-650. DOI:  10.1109/tste.2017.2752964.
    [16] 向育鹏, 卫志农, 孙国强, 等. 基于全寿命周期成本的配电网蓄电池储能系统的优化配置 [J]. 电网技术, 2015, 39(1): 264-270. DOI:  10.13335/j.1000-3673.pst.2015.01.040.

    XIANG Y P, WEI Z N, SUN G Q, et al. Life cycle cost based optimal configuration of battery energy storage system in distribution network [J]. Power System Technology, 2015, 39(1): 264-270. DOI:  10.13335/j.1000-3673.pst.2015.01.040.
    [17] 吴小刚, 刘宗歧, 田立亭, 等. 基于改进多目标粒子群算法的配电网储能选址定容 [J]. 电网技术, 2014, 38(12): 3405-3411. DOI:  10.13335/j.1000-3673.pst.2014.12.021.

    WU X G, LIU Z Q, TIAN L T, et al. Energy storage device locating and sizing for distribution network based on improved multi-objective particle swarm optimizer [J]. Power System Technology, 2014, 38(12): 3405-3411. DOI:  10.13335/j.1000-3673.pst.2014.12.021.
    [18] 尤毅, 刘冬, 钟清, 等. 主动配电网储能系统的多目标优化配置 [J]. 电力系统及其自动化, 2014, 38(18): 46-52. DOI:  10.7500/aeps20130722009.

    YOU Y, LIU D, ZHONG Q, et al. Multi-objective optimal placement of energy storage systems in an active distribution network [J]. Automation of Electric Power Systems, 2014, 38(18): 46-52. DOI:  10.7500/aeps20130722009.
    [19] 安东, 杨德宇, 武文丽, 等. 基于改进多目标蜉蝣算法的配网电池储能系统最优选址定容 [J]. 电力系统保护与控制, 2022, 50(10): 31-39. DOI:  10.19783/j.cnki.pspc.211224.

    AN D, YANG D Y, WU W L, et al. Optimal location and sizing of battery energy storage systems in a distribution network based on a modified multi-objective mayfly algorithm [J]. Power System Protection and Control, 2022, 50(10): 31-39. DOI:  10.19783/j.cnki.pspc.211224.
    [20] 陆立民, 褚国伟, 张涛, 等. 基于改进多目标粒子群算法的微电网储能优化配置 [J]. 电力系统保护与控制, 2020, 48(15): 116-124. DOI:  10.19783/j.cnki.pspc.191172.

    LU L M, CHU G W, ZHANG T, et al. Optimal configuration of energy storage in a microgrid based on improved multi-objective particle swarm optimization [J]. Power System Protection and Control, 2020, 48(15): 116-124. DOI:  10.19783/j.cnki.pspc.191172.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(10)  / Tables(4)

Article Metrics

Article views(123) PDF downloads(58) Cited by()

Related

Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers

doi: 10.16516/j.gedi.issn2095-8676.2023.02.011

Abstract:   Introduction  In order to solve the problem of the short-term heavy load of main transformers in substations caused by the high peak load of the power grid with the relatively reasonable average-load-rate and increasing utilization hours of the substations, delay the construction investment of the power grid and ensure the economic operation of the power grid, a capacity sizing method of energy storage in substations is proposed in this paper, which meets the power supply requirements with N-1 main transformers.   Method  Firstly, a capacity sizing mathematical model of energy storage was built for peak load shaving of the load operation curve and reducing the maximum load rate of the transformer. Then, the capacity sizing economic objective function of lithium ion electrochemical energy storage was constructed to compare the construction investment of lithium ion electrochemical energy storage and main transformer expansion and analyze the economy of energy storage capacity sizing. Finally, in combination with the actual condition of substations, the energy storage capacity and its feasible construction cost in economy is proposed.   Result  Through analysis, with the decreasing of unit cost of lithium ion electrochemical energy storage in the future, the energy storage power can be considered in accordance with the substation capacity of 15% and charging and discharging time of 2 hours. When the unit cost of the energy storage system is decreased to about RMB 1 200/ kWh, the economic advantage of energy storage construction is obvious.   Conclusion  The capacity sizing method of energy storage proposed can solve the problem of short-term heavy load in substations effectively, and has better economy than conventional power transmission and transformation projects.

DING Xiuxiang, LIN Wei, CHEN Kuncan, XIE Huiling. Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 78-85. doi: 10.16516/j.gedi.issn2095-8676.2023.02.011
Citation: DING Xiuxiang, LIN Wei, CHEN Kuncan, XIE Huiling. Capacity Sizing Method and Economic Analysis of Energy Storage in Substations Meeting N-1 Criterion of Main Transformers[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(2): 78-85. doi: 10.16516/j.gedi.issn2095-8676.2023.02.011
    • 随着经济社会的不断发展,负荷日益增加,系统调峰负担逐渐增大[1-2]。储能装置具备削峰填谷[3-5]、改善电力系统电能质量[6-8]、推迟输变电网投资建设[9-10]、延缓发电装机配置[11]的特点,可以提升变电站供电能力[12]、满足安全运行要求[13-15],为今后储能在电网中的规模化应用提供参考。因此,开展电网侧储能定容分析是必要的。

      目前,储能在电网侧配置已见较多研究。向育鹏[16]基于差分进化和预测-校正内点法的混合算法求解以配电网储能系统全寿命周期净收益为目标的最佳配置;吴小刚[17]从负荷波动、节点电压波动等方面建立储能多目标定容优化模型,应用改进多目标粒子群算法求解;尤毅[18]以改善电压质量、提供馈线主动调节以及提高削峰填谷等能力,建立储能多目标定容模型,并应用改进PSO算法求解等。

      以上文献多以经济性或技术性单方面开展分析,未综合技术经济性进行定容。为综合多方因素,安东[19]以投资经济性以及配电网运行的电压质量和功率稳定性为目标,设计改进的多目标蜉蝣算法进行选址定容;陆立民[20]综合负荷波动和系统成本采用改进多目标粒子群算法进行储能优化配置等。

      以上储能定容研究主要是以系统电压波动、电压质量等作为优化目标,研究配电网络储能选址及最优容量配置,经济性分析主要涉及储能系统成本等,未考虑实际电网运行如主变负载率、变电容量等相关参数及延缓输变电网投资带来的经济效益,缺乏实用性。且以上研究未针对现有电网变电站短时重载问题提出配置电网侧储能解决方案。

      本文首先根据储能参与削峰填谷机理,建立储能定容数学模型,计算特定运行负荷曲线下,满足设定目标的储能规模;然后,根据储能投资收益组成构建锂离子电化学储能定容经济目标函数;最后,结合待选变电站,分析本文所提方法在不同场景的储能配置,并结合传统输变电工程建设投资开展经济性分析,提出建议的变电站配建储能容量和经济可行的储能建设成本。经计算,本文提出储能定容方法可以有效解决主变短时重载问题,且随着储能技术发展,待电化学储能系统建设成本降低后,该配置方案将具备较传统输变电工程更优的经济效益。

    • 储能定容的主要参数为储能的额定功率和额定容量。

      1) 储能额定功率

      为满足变电站主变N-1要求,变电站正常运行时,最高负载率应低于设定值;且为实现变电站经济运行,变压器峰谷差率也应低于设定值。

      因此,储能参与削峰填谷,储能额定功率配置应满足给定峰谷差率下,削峰、填谷所需的最大功率。

      $$ P_{{\rm{CN}}}={{\rm{max}}} \left\{\left[P(t)-P_{{\rm{xf}}.{\rm{max}} }\right],\left[P_{\rm{tg.min}}-P(t)\right]\right\} $$ (1)

      式中:

      PCN ——储能额定功率(MW);

      P(t) ——典型日负荷曲线函数;

      Pxf.max ——削峰后峰值(MW);

      Ptg.min ——填谷后谷值(MW)。

      2) 储能额定容量

      储能参与削峰填谷,储能额定容量配置应不少于削峰所需电量,且削峰电量等于填谷电量。

      $$ Q_{{\rm{xf}}}=\displaystyle \sum\limits \left(\int_{t_{{\rm{fs}}}}^{t_{{\rm{fe}}}}\left[P(t)-P_{{\rm{xf}}.{\rm{max}}}\right] {\rm{d}}t\right) $$ (2)
      $$ Q_{{\rm{tg}}}=\displaystyle \sum\limits\left(\int_{t_{{\rm{gs}}}}^{t_{{\rm{ge}}}}\left[P_{{\rm{tg}}.{\rm{min}}}-P(t)\right] {\rm{d}}t\right) $$ (3)
      $$ \eta_{{\rm{CN}}} Q_{{\rm{CN}}}=Q_{{\rm{xf}}}=Q_{{\rm{tg}}} $$ (4)
      $$ P(t)-P_{{\rm{xf}}.{\rm{max}} }>0 $$ (5)
      $$ P_{{\rm{tg}}.{\rm{min}}}-P(t)>0 $$ (6)

      式中:

      QCN ——储能额定容量(MWh);

      Qxf ——削峰电量(MWh);

      Qtg ——填谷电量(MWh);

      tfs ——储能削峰开始时刻(h);

      tfe ——储能削峰结束时刻(h);

      tgs ——储能填谷开始时刻(h);

      tge ——储能填谷结束时刻(h);

      ηCN ——储能充放电系数。

      储能参与削峰填谷工作位置示意图如图1所示。

      Figure 1.  Operating location of energy storage during peak load shaving

    • 储能建设降低变压器高峰负载率,提高变压器降压利用小时数,可延迟变压器主变扩建或增容时序,从而获取建设投资的时间效益。

      在满足负荷运行可靠性原则下,对比如下方案:

      方案一:变电站本期配置储能,3~5 a后扩建一台主变;

      方案二:变电站本期扩建一台主变,3~5 a后进行主变增容。

      其中,为保证各方案供电能力一致,方案二3~5 a后增加的主变容量供电能力等同于方案一配置储能。

      上述方案投资涉及储能成本、主变扩建成本、储能维护费用、主变维护费用以及储能峰谷差效益。各项投资具体说明如下:

      1)方案一总投资

      $$ {Y}_{1}={C}_{11}+{C}_{12}+{C}_{13}+{C}_{14}-V $$ (7)

      (1)储能成本C11

      $$ {C}_{\text{11}}={C}_{{\rm{E}}}\cdot E\cdot{10}^{-1} $$ (8)

      式中:

      E ——储能额定容量(MWh);

      CE ——电池储能系统单位容量成本(元/kWh)。

      (2)主变扩建成本C12

      $$ {C}_{12}={C}_{{\rm{ZB}}}\cdot\dfrac{1}{{\left(1+i\right)}^{{n}_{1}}} $$ (9)

      式中:

      CZB ——扩建主变的投资(元/kWh);

      i ——贴现系数;

      n1 ——延缓主变扩建的年数(a)。

      (3)储能维护费用C13

      $$ C_{13}=\eta_{\rm{E}} \cdot C_{\rm{E}} \cdot E \cdot \frac{(1+i)^n-1}{i \cdot(1+i)^n} $$ (10)

      式中:

      n ——储能寿命(a);

      ηE ——储能维护系数。

      (4)扩建主变的维护费用C14

      $$ C_{14}=\eta_{{\rm{ZB}}} \cdot C_{{\rm{ZB}}} \cdot \frac{(1+i)^{n-n_1}-1}{i \cdot(1+i)^{n-n_1}} $$ (11)

      式中:

      ηZB——主变维护系数。

      (5)储能峰谷差收益V

      $$ V=C_{\rm{V}} \cdot E \cdot \displaystyle \sum\nolimits_{n=1}^{15}\left(\dfrac{1-k}{I+i}\right)^n $$ (12)

      式中:

      CV——储能每年单位峰谷差收益(元/kWh)。

      2)方案二总投资

      $$ Y_2=C_{21}+C_{22}+C_{23}+C_{24}-V $$ (13)

      (1)主变容量增加等同于方案一储能功率供电能力的成本C21

      $$ C_{21}=\left(\frac{P_{{\rm{CN}}}}{S_{{\rm{ZB}}}} \cdot C_{{\rm{ZB}}}\right) \cdot \dfrac{1}{(1+i)^{n_1}} $$ (14)

      式中:

      PCN ——储能额定功率(MW);

      SZB ——主变扩建容量(MVA)。

      (2)主变扩建成本C22

      $$ C_{22}=C_{{\rm{ZB}}} $$ (15)

      (3)主变容量增加的维护费用C23

      $$ C_{23}=\eta_{\rm{E}} \cdot C_{21} \cdot \frac{(1+i)^{n-{n_1}}-1}{i \cdot(1+i)^{n-{n_1}} } $$ (16)

      (4)扩建主变的维护费用C24

      $$ C_{24}=\eta_{{\rm{ZB}}} \cdot C_{22} \cdot \dfrac{(1+i)^n-1}{i \cdot(1+i)^n} $$ (17)

      3)目标函数

      本文依据储能建设成本与推迟主变扩建投资两者之间找到平衡,构建储能定容经济目标函数:

      $$ \Delta Y=Y_1-Y_2 \leqslant 0 $$ (18)

      式中:

      ΔY=0为变电站配置储能最低应满足的经济条件;若ΔY<0,则说明该站本期配置储能比扩建主变具有更优的经济性。

      易知,在其余系数不变时,储能建设投资与储能系统单位容量成本呈线性关系。目前储能系统成本较高(2 000元/kWh),但随着未来储能技术的提升,储能单位造价也将持续降低。因此,下文基于上述趋势进行储能定容经济可行性分析。

    • 变电站储能定容方法总体流程详如图2所示,主要步骤如下:

      Figure 2.  Process chart of capacity sizing method of energy storage in substations meeting N-1 criterion of main transformers

      1)根据变电站容量以及变电站年均负荷增长率,以满足主变N-1为原则,确定储能额定功率PCN,使主变扩建推迟3~5 a。具体为:设变电站3~5 a后预测最高负荷为Pmax,满足主变N-1原则的变电站最高负荷限值为PlimitPlimit小于变电站主变N-1后剩余主变容量1.3倍),令Pxf.max=Plimit,则PCN由式(19)决定:

      $$ {P}_{{\rm{CN}}}={P}_{{\rm{max}}}-{P}_{{\rm{limit}}} $$ (19)

      2)结合变电站典型负荷曲线及储能额定功率,利用式(2)、式(4)、式(5)计算储能将变电站最高负荷削峰至给定值时所需削峰容量Qxf,确定储能额定容量QCN

      3)根据式(7)~式(18),利用储能额定容量QCN,分别计算前述两个满足负荷运行可靠性原则方案的总投资Y1Y2;并根据目标函数进行储能定容经济可行性分析,若ΔY≤0,说明配置储能是可行的;反之,配置储能是不可行的。

      4)输出结果:削峰基线Pxf.max和填谷基线Ptg.min,削峰时刻tfstfe和填谷时间tgstge以及储能额定容量QCN和功率PCN

    • 1)储能出力时段

      目前福建省电价时段分为高峰、平段、低谷3个时段,各8 h。其中:

      低谷时段:23:00~次日7:00;

      高峰时段:8:30~11:30、14:30~17:30、19:00~21:00;

      其余时段为用电平时段。

      为提高储能经济效益,仅考虑在低谷时段进行充电。

      2)建设投资及相关参数

      220 kV主变扩建:2 200万元/台;

      储能现状单位造价:2 000元/kWh;

      主变维护费用比例:2%;

      储能维护费用比例:2%;

      贴现率:8%;

      储能运行期:15 a;

      储能充放电系数:0.95;

      峰谷差电价:0.5元/kWh;

      充放电天数:350 d/a。

      3)负荷曲线

      以福建电网3座新建220 kV变电站为研究对象,预测各变电站供电区的负荷特性,提取典型日负荷曲线如图3所示。

      Figure 3.  Forecast typical daily load curve of power supply area in substations

      可知,各站供电负荷峰谷差较为明显,具有良好的储能配置条件。

      4)变电站参数

      3座新建220 kV变电站仿真参数如表1所示,考虑到变电站A变电容量相对较大、且站A、B年均负荷增长率相对较高,考虑按延迟3 a主变扩建;变电站C供区年均负荷增长率相对较低,考虑站C配置储能以推迟5 a主变扩建。

      变电站N
      主变容量/
      MVA
      N
      主变负载率/
      %
      N+3年
      负荷/
      MW
      N+5年
      负荷/
      MW
      站A2×24065360396
      站B2×18065275306
      站C2×18065263285

      Table 1.  Basic parameters of three 220 kV substations

    • 结合前文所述定容原则,计算得3座变电站储能配置如表2所示;配置储能后,变电站运行情况有所改善,以储能参与各变电站年最高负荷典型日运行为例,应用情况如表3图4~图6所示。

      变电站储能额定功率/
      MW
      储能额定容量/
      MWh
      储能最大充放电
      小时数/h
      站A48135.62.83
      站B4179.51.94
      站C51125.12.45

      Table 2.  Energy storage scale in 220 kV substations

      变电站削峰基线/
      MW
      填谷基线/
      MW
      削峰时长/
      h
      填谷时长/
      h
      站A3122455.556.08
      站B2341554.696.07
      站C2342116.205.19
      注:填谷基线指储能充电时的变电站负载,并非考虑储能充放电后,变电站当日负荷谷值。

      Table 3.  Typical daily operation of energy storage under the highest load in 220 kV substations

      Figure 4.  Example diagram of typical daily peak load shaving of energy storage under the highest load in substation A

      Figure 5.  Example diagram of typical daily peak load shaving of energy storage under the highest load in substation B

      Figure 6.  Example diagram of typical daily peak load shaving of energy storage under the highest load in substation C

      1)变电站A、B、C负荷曲线呈现“双峰”“三峰”的多个峰值;储能所配置的削峰功率与变电站供电区负荷特性相关性较大。其中,变电站C尖峰负荷最为突出,所需储能功率最大(51 MW),占变电站变电容量14%。变电站A、B峰值相对较小,需配置约10%储能。

      2)3座变电站峰值时间持续均相对较长,需要的削峰容量相对较高。结合变电站配置储能功率,3座变电站需配置的储能充放电小时数在2~3 h,略长于多数已建储能装置(2 h)。

      3)通过配置一定规模的储能后,能够削峰填谷,起到平滑负荷曲线的效果;但考虑电价低谷时段与变电站负荷低谷时期不完全重合,考虑经济效益的储能填谷效应相对较差。

    • 针对前述储能配置情况,结合储能定容经济可行性分析法进行经济可行性分析,可得不同储能造价水平下各站比选方案经济特性曲线如图7~图9

      Figure 7.  Economic characteristic curves of substation A comparison schemes

      Figure 8.  Economic characteristic curves of substation B comparison schemes

      Figure 9.  Economic characteristic curves of substation C comparison schemes

      在4.1节参数基础上,变电站A、B、C对应的储能系统成本最大经济容许值分别约为1 223元/kWh、1 272元/kWh、1 246元/kWh。当储能单位容量建设投资高于以上最大经济容许值时,建设储能而推迟主变扩建方案经济效益高于直接扩建主变方案。

      变电站A、B、C方案一经济特性对比如图10所示。方案一(储能方案)经济特性斜率主要取决于储能系统容量,截距主要取决于储能系统容量、主变推迟投产时间等。

      Figure 10.  Economic characteristic curves comparison between scheme 1 of different substations

      因此,变电站A经济特性低幅度最大,变电站C次之,变电站B最小。当储能系统成本高于约1 162元/kWh时,站A配置储能总投资高于其他两站;当储能系统成本低于1 220元/kWh时,站C配置储能总投资将低于其他两站,说明随着储能系统成本降低,储能峰谷差调峰效益将在储能配置中占主导作用。

    • 结合前文算例分析,可得在考虑满足主变N-1原则下,推迟主变扩建3~5 a投产,变电站配置储能功率占本期主变容量10%~15%,最大充放电时长2~3 h,如表4

      变电站主变容量/
      MVA
      储能最大充放电
      小时数/h
      储能功率占主变
      百分比/%
      站A2×2402.8310.0
      站B2×1801.9411.4
      站C2×1802.4514.2

      Table 4.  Overview of energy storage in substations

      随着远景大规模电动汽车、新能源等具有尖峰负荷特性的资源接入,变电站供电高峰负荷可能进一步提高,负荷曲线出现更为明显的尖峰,从而提高变电站最高负载率,对配建储能的削峰功率要求有所提高。

      另一方面,由于尖峰负荷占比增大,实际负荷利用小时数可能有所降低,则变电站降压负荷利用小时数相应下降,高峰负荷持续时间缩短,对配建储能的容量需求随之减小。

      因此,结合前文分析配置储能规模,建议新建站储能功率按变电站容量(2台主变)的15%预留,充放电时长取2 h。

      远景随着储能技术的提升和应用的成熟,储能造价也将大幅降低,配置储能的经济性更优,待储能系统单位造价降低至1 200元/kWh及以下时,可考虑结合技术分析,进一步扩大储能配置的比例。

    • 针对现有电网变电站短时负载较高的问题,本文提出满足主变N-1原则的变电站储能定容方法:

      1)通过分析储能削峰填谷机理,建立储能定容模型,计算得到满足既定目标下的储能额定功率及容量等建设规模。

      2)根据建设储能通过推迟主变扩建、削峰填谷获取收益途径分析,建立储能电容经济目标函数。

      本文结合实际变电站运行曲线、主变参数等,利用储能定容方法计算合理储能容量,并开展经济性分析。根据本文分析,得出以下结论:

      1) 以满足主变N-1原则的储能配置可根据变电站主变参数、实际负荷及运行曲线等确定储能规模,解决变电站短时重载问题。随着未来尖峰负荷的发展,初步建议储能功率可按照变电站容量15%、充放电时长2 h考虑。

      2) 现状储能系统单位造价相对较高,建设储能经济优势不明显,待储能系统单位造价降低至1 200元/kWh左右时,建设储能的经济优势将有所提高,可考虑优先建设变电站储能方案。

      3) 结合未来分布式可再生能源的发展,变电站供电区内负荷、电源特性将有所变化,建议后续可开展以主变N-1原则为主,综合统筹区域可再生能源等多项边界的储能电容方法分析工作。

Reference (20)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return