• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue 5
Sep.  2023
Turn off MathJax
Article Contents

LI Tonglin, FENG Yuan, HUANG Yaou, WANG Tao. Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 34-40. doi: 10.16516/j.gedi.issn2095-8676.2023.05.005
Citation: LI Tonglin, FENG Yuan, HUANG Yaou, WANG Tao. Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 34-40. doi: 10.16516/j.gedi.issn2095-8676.2023.05.005

Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components

doi: 10.16516/j.gedi.issn2095-8676.2023.05.005
  • Received Date: 2023-07-08
  • Rev Recd Date: 2023-08-17
  • Available Online: 2023-09-06
  • Publish Date: 2023-09-10
  •   Introduction  With the continuous improvement of the strategic position of clean energy, more and more new energy power generation equipment is connected to the power grid, but its power quality is unstable, which has a great impact on the AC (Alternating-Current) transmission grid. Flexible DC (Direct-Current) transmission networks can effectively isolate AC and the DC networks, and have good development prospects. The key component of flexible DC power transmission is the converter valve. The key component of flexible DC power transmission is the converter valve with fully controlled IGBT components as the core. Therefore, the safe and stable operation of IGBT (Insulate-Gate Bipolar Transistor) components plays an important role in the stability of the entire flexible DC system. In order to improve the safety and operational stability of IGBT components, it is necessary to control their operating current and voltage to avoid overcurrent and overvoltage damage. At the same time, it is necessary to control the temperature and humidity of the environment, equipment corrosion resistance to improve operating conditions.   Method  Therefore, both internal and external strategies were adopted. Starting resistors, reactors, lightning arresters, etc. were installed internally to control the current and voltage of the circuit. Externally, air conditioners were set, the room tightness was improved, and equipment anti-corrosion treatment was equipped to ensure a good working environment.   Result  By configuring starting resistors, reactors, lightning arresters and other facilities in the internal circuit, the circuit current and voltage are limited, and then the overcurrent multiple and overvoltage multiple acting on the IGBT components are controlled under extreme conditions. By controlling the temperature and humidity of the room where the IGBT is located and the corrosion resistance of the equipment, a suitable environment is provided for the operation of the IGBT components, which is helpful to improve the safety and operational reliability of the IGBT components.   Conclusion  Flexible DC transmission can well solve the power transmission problem of new energy power generation facilities with poor power quality. And by optimizing the internal strategy of the flexible DC transmission system circuit and the external strategy to improve the suitability of the operating environment of the IGBT components, the safety and operational reliability of the IGBT components and even the entire flexible direct current system are improved.
  • [1] 陆子凯, 简翔浩, 张明瀚. 多端柔性直流配电网的可靠性和经济性评估 [J]. 南方能源建设, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.

    LU Z K, JIAN X H, ZHANG M H. Reliability and economy assessment of multi-terminal flexible DC distribution network [J]. Southern energy construction, 2020, 7(4): 67-74. DOI:  10.16516/j.gedi.issn2095-8676.2020.04.010.
    [2] 张明瀚, 简翔浩, 陆子凯. 珠海“互联网+”柔性直流配电网换流站设计方案 [J]. 南方能源建设, 2020, 7(1): 95-100. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.015.

    ZHANG M H, JIAN X H, LU Z K. Design of converter stations of Zhuhai“Internet +” flexible DC distribution network [J]. Southern energy construction, 2020, 7(1): 95-100. DOI:  10.16516/j.gedi.issn2095-8676.2020.01.015.
    [3] 刘生. 大容量海上柔性直流换流站紧凑型布置研究 [J]. 南方能源建设, 2021, 8(1): 45-50. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.006.

    LIU S. Research on compact layout of large capacity offshore flexible DC converter station [J]. Southern energy construction, 2021, 8(1): 45-50. DOI:  10.16516/j.gedi.issn2095-8676.2021.01.006.
    [4] 金阳忻, 高一波. 中压直流换流站最优电流控制算法研究 [J]. 电网技术, 2021, 45(5): 1773-1781. DOI:  10.13335/j.1000-3673.pst.2020.0470.

    JIN Y X, GAO Y B. Optimal current control algorithm in medium voltage DC converters [J]. Power system technology, 2021, 45(5): 1773-1781. DOI:  10.13335/j.1000-3673.pst.2020.0470.
    [5] 彭冠炎. 柔性直流换流站站级控制系统交流联络状态监测研究 [J]. 南方能源建设, 2016, 3(增刊1): 103-106. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.022.

    PENG G Y. Research on AC tie line status monitor in station control system of VSC-HVDC station [J]. Southern energy construction, 2016, 3(Suppl. 1): 103-106. DOI:  10.16516/j.gedi.issn2095-8676.2016.S1.022.
    [6] 陈继开, 王永浩, 李浩茹, 等. 交流不对称多端柔直受端换流站交互影响分析与抑制方法 [J]. 电网技术, 2022, 46(6): 2366-2374. DOI:  10.13335/j.1000-3673.pst.2021.1440.

    CHEN J K, WANG Y H, LI H R, et al. Interaction analysis and suppression of AC asymmetric MMC-MTDC receiving converter station [J]. Power system technology, 2022, 46(6): 2366-2374. DOI:  10.13335/j.1000-3673.pst.2021.1440.
    [7] 孔明, 汤广福, 贺之渊, 等. 不对称交流电网下MMC-HVDC输电系统的控制策略 [J]. 中国电机工程学报, 2013, 33(28): 41-49. DOI:  10.13334/j.0258-8013.pcsee.2013.28.011.

    KONG M, TANG G F, HE Z Y, et al. A control strategy for modular multilevel converter based HVDC of unbalanced AC systems [J]. Proceedings of the CSEE, 2013, 33(28): 41-49. DOI:  10.13334/j.0258-8013.pcsee.2013.28.011.
    [8] 张璐, 唐巍, 卢莹, 等. 面向新型源荷接入的交直流混合配电网关键技术研究综述 [J]. 供用电, 2020, 37(10): 3-9,21. DOI:  10.19421/j.cnki.1006-6357.2020.10.001.

    ZHANG L, TANG W, LU Y, et al. Overview of hybrid AC/DC distribution network key technologies facing novel source and load integration [J]. Distribution anf utilization, 2020, 37(10): 3-9,21. DOI:  10.19421/j.cnki.1006-6357.2020.10.001.
    [9] 郝为瀚. 海上平台柔性直流换流站工程应用方案研究 [J]. 南方能源建设, 2017, 4(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.012.

    HAO W H. Research on VSC-HVDC converter station application on offshore platform [J]. Southern energy construction, 2017, 4(1): 66-70. DOI:  10.16516/j.gedi.issn2095-8676.2017.01.012.
    [10] 徐政, 薛英林, 张哲任. 大容量架空线柔性直流输电关键技术及前景展望 [J]. 中国电机工程学报, 2014, 34(29): 5051-5062. DOI:  10.13334/j.0258-8013.pcsee.2014.29.006.

    XU Z, XUE Y L, ZHANG Z R. VSC-HVDC technology suitable for bulk power overhead line transmission [J]. Proceedings of the CSEE, 2014, 34(29): 5051-5062. DOI:  10.13334/j.0258-8013.pcsee.2014.29.006.
    [11] 徐政, 屠卿瑞, 裘鹏. 从2010国际大电网会议看直流输电技术的发展方向 [J]. 高电压技术, 2010, 36(12): 3070-3077. DOI:  10.13336/j.1003-6520.hve.2010.12.030.

    XU Z,TU Q R, QIU P. New trends in HVDC technology viewed through CIGRE 2010 [J]. High voltage engineering, 2010, 36(12): 3070-3077. DOI:  10.13336/j.1003-6520.hve.2010.12.030.
    [12] 唐庚, 徐政, 薛英林. LCC-MMC混合高压直流输电系统 [J]. 电工技术学报, 2013, 28(10): 301-310. DOI:  10.19595/j.cnki.1000-6753.tces.2013.10.036.

    TANG G, XU Z, XUE Y L. A LCC-MMC hybrid HVDC transmission system [J]. Transactions of China electrotechnical society, 2013, 28(10): 301-310. DOI:  10.19595/j.cnki.1000-6753.tces.2013.10.036.
    [13] 薛浩岩, 张天慈, 王心远, 等. 海上风电柔性直流输电系统故障穿越安全研究 [J]. 电力安全技术, 2023, 25(1): 32-37. DOI:  10.3969/j.issn.1008-6226.2023.01.010.

    XUE H Y, ZHANG T C, WANG X Y, et al. Study on fault traversal safety of offshore wind power flexible DC transmission system [J]. Electric safety technology, 2023, 25(1): 32-37. DOI:  10.3969/j.issn.1008-6226.2023.01.010.
    [14] 饶宏, 周月宾, 李巍巍, 等. 柔性直流输电技术的工程应用和发展展望 [J]. 电力系统自动化, 2023, 47(1): 1-11. DOI:  10.7500/AEPS20220330004.

    RAO H, ZHOU Y B, LI W W, et al. Engineering application and development prospect of VSC-HVDC transmission technology [J]. Automation of electric power systems, 2023, 47(1): 1-11. DOI:  10.7500/AEPS20220330004.
    [15] 饶宏, 黄伟煌, 郭知非, 等. 柔性直流输电技术在大电网中的应用与实践 [J]. 高电压技术, 2022, 48(9): 3347-3355. DOI:  10.13336/j.1003-6520.hve.20221020.

    RAO H, HUANG W H, GUO Z F, et al. Practical experience of VSC-HVDC transmission in large grid [J]. High voltage engineering, 2022, 48(9): 3347-3355. DOI:  10.13336/j.1003-6520.hve.20221020.
    [16] 赵雪. 多端柔性直流输电系统有功优化分配 [D]. 广州: 华南理工大学, 2021.

    ZHAO X. Optimal active power allocation for VSC-MTDC transmission system [D]. Guangzhou: South China University of Technology, 2021.
    [17] 朱劲松. 柔性直流输电技术在电力系统中的应用 [J]. 农业工程与装备, 2022, 49(6): 53-55. DOI:  10.3969/j.issn.1007-8320.2022.06.017.

    ZHU J S. Application of the flexible high voltage direct current technology in power system [J]. Agricul engineering and equipment, 2022, 49(6): 53-55. DOI:  10.3969/j.issn.1007-8320.2022.06.017.
    [18] 雷顺广, 束洪春, 李志民, 等. 柔性直流输电系统的桥臂功率解析 [J]. 电网技术, 2023, 47(4): 1490-1499. DOI:  10.13335/j.1000-3673.pst.2022.1359.

    LEI S G, SHU H C, LI Z M, et al. Bridge arm power analysis of flexible HVDC transmission system [J]. Power system technology, 2023, 47(4): 1490-1499. DOI:  10.13335/j.1000-3673.pst.2022.1359.
    [19] 孙佳怡. 基于新能源并网的柔性直流输电控制技术 [J]. 电子技术与软件工程, 2022(19): 130-133.

    SUN J Y. Flexible HVDC transmission control technology based on new energy grid [J]. Electronic Technology & Software Engineering, 2022(19): 130-133.
    [20] 欧东海. 大规模海上风电柔性直流输电研究 [J]. 光源与照明, 2022(9): 220-222.

    OU D H. Research on large-scale offshore wind power flexible DC transmission [J]. Lamps & lighting, 2022(9): 220-222.
    [21] 殷俊雨. 谈柔性直流输电技术应用、进步与期望 [C]//2022年上海工程技术与新材料论坛论文集(ETM2022), 线上会议, 2022-07-31. 2022: 4-5. DOI: 10.26914/c.cnkihy.2022.037470.

    YIN J Y. Application, progress and expectation of flexible HVDC technology [C]//Proceedings of 2022 Shanghai Forum on Engineering Technology and New Materials (ETM2022), online, July 31, 2022. 2022: 4-5. DOI: 10.26914/c.cnkihy.2022.037470.
    [22] 高根男, 张兰红, 陈小海. 柔性直流输电技术在海上风电中的应用研究 [J]. 自动化仪表, 2022, 43(6): 90-94,98. DOI:  10.16086/j.cnki.issn1000-0380.2021110089.

    GAO G N, ZHANG L H, CHEN X H. Research on application of VSC-HVDC technology in offshore wind power [J]. Process automation instrumentation, 2022, 43(6): 90-94,98. DOI:  10.16086/j.cnki.issn1000-0380.2021110089.
    [23] 李敬业. 新能源接入的多端柔性直流输电系统分布式协同优化控制策略研究 [D]. 兰州: 兰州交通大学, 2022. DOI: 10.27205/d.cnki.gltec.2022.000202.

    LI J Y. Research on distributed cooperative optimal control strategy of VSC-MTDC system with renewable energy integration [D]. Lanzhou: Lanzhou Jiaotong University, 2022. DOI: 10.27205/d.cnki.gltec.2022.000202.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(6)

Article Metrics

Article views(180) PDF downloads(43) Cited by()

Related

Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components

doi: 10.16516/j.gedi.issn2095-8676.2023.05.005

Abstract:   Introduction  With the continuous improvement of the strategic position of clean energy, more and more new energy power generation equipment is connected to the power grid, but its power quality is unstable, which has a great impact on the AC (Alternating-Current) transmission grid. Flexible DC (Direct-Current) transmission networks can effectively isolate AC and the DC networks, and have good development prospects. The key component of flexible DC power transmission is the converter valve. The key component of flexible DC power transmission is the converter valve with fully controlled IGBT components as the core. Therefore, the safe and stable operation of IGBT (Insulate-Gate Bipolar Transistor) components plays an important role in the stability of the entire flexible DC system. In order to improve the safety and operational stability of IGBT components, it is necessary to control their operating current and voltage to avoid overcurrent and overvoltage damage. At the same time, it is necessary to control the temperature and humidity of the environment, equipment corrosion resistance to improve operating conditions.   Method  Therefore, both internal and external strategies were adopted. Starting resistors, reactors, lightning arresters, etc. were installed internally to control the current and voltage of the circuit. Externally, air conditioners were set, the room tightness was improved, and equipment anti-corrosion treatment was equipped to ensure a good working environment.   Result  By configuring starting resistors, reactors, lightning arresters and other facilities in the internal circuit, the circuit current and voltage are limited, and then the overcurrent multiple and overvoltage multiple acting on the IGBT components are controlled under extreme conditions. By controlling the temperature and humidity of the room where the IGBT is located and the corrosion resistance of the equipment, a suitable environment is provided for the operation of the IGBT components, which is helpful to improve the safety and operational reliability of the IGBT components.   Conclusion  Flexible DC transmission can well solve the power transmission problem of new energy power generation facilities with poor power quality. And by optimizing the internal strategy of the flexible DC transmission system circuit and the external strategy to improve the suitability of the operating environment of the IGBT components, the safety and operational reliability of the IGBT components and even the entire flexible direct current system are improved.

LI Tonglin, FENG Yuan, HUANG Yaou, WANG Tao. Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 34-40. doi: 10.16516/j.gedi.issn2095-8676.2023.05.005
Citation: LI Tonglin, FENG Yuan, HUANG Yaou, WANG Tao. Research on Flexible HVDC Transmission Technology and Strategies for Improving the Operational Stability of IGBT Components[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(5): 34-40. doi: 10.16516/j.gedi.issn2095-8676.2023.05.005
    • 随着“双碳”目标的提出,发电厂的环保清洁性又被提到一个新的高度[1-2]。传统火电虽然依然起到“兜底保电”的作用,但由于其污染程度相对较高,新建火电机组的核准遇到阻力。光伏电厂、海上风电、陆上风电等新能源发电具有清洁度高、所用资源无枯竭危险等一系列优点,战略地位不断提高[3]。但新能源发电更依赖于自然环境,如风电场受风速影响较大,风速不同产生的电能数量及质量均有较大区别[4-5],因此新能源发电系统的电能质量较低,对电力系统产生较大的谐波影响[6-7]

      我国传统的输配电方式是以高电压等级的交流输电为主,如220 kV、500 kV、750 kV等[8],但如果有大量谐波涌入交流输电线路将遇到较大冲击,尤其在谐波量较大的情况下系统有可能失稳,甚至瓦解[9-10]。新能源电厂的接入对传统的交流输电网产生了较大的影响,为了降低这种谐波的冲击,直流输电应运而生[11-12]

      直流输电的诞生,是以晶闸管[13]技术的出现为基础的,传统直流输电的系统图如图1所示,利用晶闸管来实现电能的整流、逆变,从而构成直流输电系统的最简单拓扑结构。直流输电的出现,解决了长距离输电、降低线路损耗、异步电源的级联等一系列困扰交流输电的问题[14-15]。但由于晶闸管的关断不能自主控制,必须通过外加交流电源来实现,因此传统直流输电具有容易换相失败,无法向无源系统供电,很难实现向弱交流系统,多端直流系统供电等缺点[16]。为解决上述问题,柔性直流输电应运而生[17]

      Figure 1.  Traditional DC transmission system diagram

      柔性直流输电和近期我国的能源形式、偏远地区供电需求、海岛多端直流的互联契合度较高,其技术的发展和供电的安全性、运行可靠性受到不断关注[18-19]。以鲁西背靠背工程为例,此工程同时建设了2种直流输电方式,发现当交流系统发生故障时,传统直流输电由于换相失败而停止工作,但柔性直流输电则具有良好阻断故障的功能,可以继续工作,柔性直流输电的优越性显而易见。而绝缘栅双极型晶体管(Insulate-Gate Bipolar Transistor,IGBT)元件是柔性直流输电技术中的核心部件[20-21],IGBT元件的可靠运行是整个柔性直流输电系统安全稳定运行的基础,因此必须采取有效可靠的措施来提高IGBT元件的安全性和运行稳定性[22-23]

      文章通过调查已运行直流输电工程的运行状况,总结归纳了提高IGBT元件运行可靠性的内部、外部策略,并针对柔性直流输电在海上风电的新工程应用环境,提出了提高IGBT设备耐腐蚀性的方法,对海上风电工程应用中柔性直流输电设备的运行可靠性具有重要意义。

    • “全控型IGBT”的导通和关断可以自主控制,为柔性直流输电提供了技术基础。柔性直流输电的系统图如图2所示。

      Figure 2.  Flexible DC transmission system diagram

      图2所示,ZL1、Zconv1为发电交流侧等效阻抗,ZL2、Zconv2为负荷交流侧等效阻抗,VSC为电压源换流器,可以实现整流、逆变作用,直流输电线路的等效阻抗用RdUd1来表示,其中,本等效电路中的核心元件即为电压源换流器VSC,其由全控型的IGBT组成,可以实现自换相。

      柔性直流输电最核心的技术和器件是IGBT元件,其具有可控性,开关的换相不依赖于交流电源。和传统直流输电相比,其主要优点如下:

      1)其核心元件可以自由关断,实现全控制。

      2)不需要外加交流电源作为换相支撑,可以自己换相,不会发生换相失败的情况。

      3)可以实现对弱电系统、无源电源的供电。

      4)无功和有功调节可以分别独立进行,克服了常规直流输电无功不可控制的缺点。

      5)易于构成多端直流输电系统,助力于为分散的新能源发电提供输电方案。

      6)由于其自由控制开关,谐波含量相对较低,只需要较小的滤波器,甚至有些情况下不需要滤波器。由于滤波器体积较大,减小滤波器的尺寸可以有效减小换流站的体积,减少占地面积。

      7)可以实现功率的快速反向传输和控制。

      柔性直流输电具有以上优点,在新能源发电并网、偏远地区电网接入、海岛互联、多端直流接入等工况的方案解决有显著优势。

    • 由柔性电流输电系统图得到的等效电路如图3所示。

      Figure 3.  Equivalent circuit diagram of flexible direct current transmission system

      图3所示,PCC为交流系统发电设备的简称,ReqLeq为发电设备到整流设备之间的等效阻抗,VSC的交流母线电压的基频分量Us和交流输出电压的基频分量Vc将会作用于变压器和电抗器两端,设变压器和电抗器整体的等效电抗为Xc,VSC和交流输电系统交换的有功功率和无功功率可以按照以下公式求导,其中Xeq为系统的等效阻抗。

      $$ {P}=\dfrac{{U}_{{\rm{S}}}{V}_{{\rm{C}}}}{{X}_{{\rm{eq}}}}\mathrm{sin}\delta $$ (1)
      $$ {Q}=\dfrac{{U}_{{\rm{S}}}{({U}_{{\rm{S}}}-V}_{{\rm{C}}}\mathrm{cos}\delta )}{{X}_{{\rm{eq}}}} $$ (2)

      由计算公式可知,有功功率P和无功功率Q都和VSC的交流母线电压的基频分量Us成正相关,且和Us、Uc和之间的夹角δ、系统的等效阻抗成负相关,且由公式可知,PQ可以实现四象限运动。PQ的运行图如图4所示。

      Figure 4.  The relation diagram of active power and reactive power exchanged by VSC and AC transmission system

      根据Q正负的不同,可以分为不同的无功功率形式,当Q<0时,为容性无功,当Q>0时,为感性无功;根据P正负的不同,可以区分IGBT元件不同的工作模式,当P<0时,为逆变模式,即直流向交流的转变,当P>0时,为整流模式,即交流电转变为直流电的模式。由此可见,柔性直流系统可以在四象限运行,运行灵活性较高。

      N个VSC模块串联组合,就组成了模块化多电平(Modular Multi-Level Converter,MMC)的拓扑方式。

    • 图3可知,单个的VSC元件由上下2个IGBT元件组成,我们将上方的IGBT元件命名为D1,下方的为D2,通过控制D1、D2的导通或者关断,即可控制VSC模块的投入或退出。

      图5所示,当D1开通,D2关断,则电容器C0投入,子模块输出高电平。

      Figure 5.  Submodule input mode

      而当D1关断、D2导通时,电容器C0被旁路掉,子模块则输出低电平。

      图5图6所示,单个VSC元件有运行、退出2种不同的运行模式,而柔性直流输电将N个VSC模块级联,可以通过控制桥臂上每个VSC模块的退出和投入,实现交直流电源的柔性互换。

      Figure 6.  Submodule exit mode

    • 由柔性直流输电的工作原理可知,整个柔性直流输电技术的核心是IGBT元件,其安全可靠运行,对柔性直流输电的正常运行至关重要,需采取一定的措施保证其安全、稳定运行。

    • IGBT元件对工作电压、工作电流的敏感性较高,当发生过电压现象时,IGBT元件有可能被击穿,对元件造成损坏;当过电流时,IGBT的电容加速充电,驱动回路容易产生比较大的栅极电压,当此电压超过阈值后,将会导致IGBT元件失效。因此在柔性直流输电系统内部,采取一定的措施限制回路的电流和电压,提高IGBT元件的运行安全性和可靠性。

    • 在系统启动前,MMC元件输出电压为0,各IGBT元件处于关断状态。在交流电上电时,启动电阻可以起到减小回路电流的作用,可以减少通过电容器C0的电流,防止IGBT元件上流过的电流超过限值,可以对IGBT元件起到保护的作用。乌东德项目中,通过选择合适的启动电阻,可以很好地抑制过电流,目前项目运行平稳。

    • 阀电抗器安装于换流阀和交流系统之间,可以起到限制交流电流和电压中谐波分量的作用,且当交流系统发生故障或发生电压扰动时,电抗器可以控制电流的变化速率,并可以限制短路电流的峰值,对系统设备起到保护的作用。

    • 换流阀采用环抱式设计,节省空间,阀体依次排开,有助于散热且有利于巡检与维护。此方案在锡盟-泰州直流输电工程中应用,目前运行良好,显示出良好的工作性能。

    • 为了降低运行时IGBT元件的温度,换流阀内部可以采用乙二醇和水联合降温的措施,起到好的控制温度的效果。

    • 在柔性直流回路中装设避雷器,可以减少雷电冲击过电压和入侵过电压的峰值,保护回路所有元件、设备,包括IGBT元件的安全性。

    • 由于电力电子元件对运行环境要求较高,因此需控制好其运行的温度和湿度,及设备防腐,保证其安全、可靠运行。

    • 由于IGBT元件在运行中会发热,过高的环境温度将会导致IGBT芯片和散热器之间存在较大的温度差,产生较大的热应力,严重影响IGBT元件的安全稳定运行。换流阀布置于室内,房间内应装设空调,以保证室内维持在一个稳定的温度状态。并且为提高空调的运行可靠性,为空调设置双电源供电,当一路电源失去时,自动投入另一路电源;同时,换流阀应装设外风扇,以控制IGBT元件的运行温度。

    • 由于水为导体,较为湿润的环境会在电气元件、IGBT元件中凝露且导通电路,可能导致回路短路或其他危害,因此必须严格控制换流阀室内的湿度。

      1)提高换流阀房间的防水及排水能力,房间内的标高不低于室外地面标高,避免房间发生漏雨、漏水现象。

      2)电缆通道应进行严密的封堵工序,避免水通过电缆通道流入室内。

      3)空调系统具有湿度控制功能,可以控制调节室内的空气湿度。

      4)换流阀房间应封闭良好,尽量减少室外湿气进入房间。

    • 柔性直流输电技术应用范围不断扩大,已有运行于海上风电项目送出的工程案例,由于海边盐雾腐蚀严重,高盐雾环境中的凝胶会渗透到IGBT元件表面,由于氯离子具有较大的腐蚀性,对合金钢等很多材料损害较大,严重影响IGBT元件的安全运行,影响其正常使用寿命。当柔性直流设备布置于海边时,提高设备的耐盐雾度十分重要,而IGBT元件属于整个系统对运行环境要求最为严苛的设备,找到合适的方法,提高其防腐性能,十分重要。通过油漆涂覆、热喷锌、热浸锌等工艺可以极大改善设备在内陆及海上的耐盐雾腐蚀性能。

    • 电能质量不稳定的新能源发电电厂的不断接入对传统的交流输电产生了较大的冲击,导致谐波涌入,而柔性直流输电可以很好地解决这一难题。文章通过对柔性直流输电建设必要性的概述和工作原理的介绍,基于全控型IGBT元件是整个柔性直流系统的技术核心,结合柔性直流系统内外因素,提出了提高IGBT元件安全性和运行可靠性的措施。内部措施主要是控制工作电流、电压及内部环境状态,即设置启动电阻、电抗器,合理选择换流阀的结构形式及内部冷却介质等;外部措施主要是控制IGBT运行环境的温度和湿度,并针对应用于海上风电送出工程的特殊需求,提出提高设备耐盐雾腐蚀性措施,使得其运行的自然环境相对友善,即设置外加风机、供电可靠的空调系统,对设备进行防腐处理等,延长IGBT元件的使用寿命,提高其运行可靠性。

Reference (23)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return