• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 10 Issue S1
Jun.  2023
Turn off MathJax
Article Contents

TAN Xiaolong, LI Longhui, JIA Yong, JIANG Xiaohong. Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 64-67. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010
Citation: TAN Xiaolong, LI Longhui, JIA Yong, JIANG Xiaohong. Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 64-67. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010

Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010
  • Received Date: 2023-04-08
  • Rev Recd Date: 2023-04-10
  • Publish Date: 2023-06-30
  •   Introduction  The operating pressure of the storage tank of the auxiliary feedwater system (ASG) in nuclear power plant is stabilized within the designed pressure range through the combined action of the back pressure control valve and the breathing valve. Abnormal pressure, overpressure or negative pressure deformation in the storage tank will affect the normal operation of the system and cause the failure of the safety function of the system. The performance of the back pressure control valve and breathing valve is very important. Based on the analysis of the existing problems, the back pressure control valve and breathing valve are improved to ensure the pressure stability of the pressure storage tank.   Method  According to the actual operation experience, the structure of the back pressure control valve and the breathing valve were compared, and the two kinds of valves were improved from the valve structure, sealing type, etc.   Results  The performance of the improved equipment was stable and no abnormal phenomena such as over-high pressure alarm occurred during use.   Conclusion  The improved back pressure control valve and breathing valve have been widely used in practical projects, providing certain identification for the subsequent treatment of similar valve problems.
  • [1] 法国核岛设备设计、建造及在役检查规则协会. 压水堆核岛机械设备设计和建造规则: RCC-M(2000版+2002补遗) [S]. 中科华核电技术研究院有限公司, 译. 上海: 上海科学技术文献出版社, 2010.

    AFCEN. Code for design and construction of pressurized water reactor nuclear island mechanical equipment: RCC-M (2000 edition +2002 addendum) [S]. China Kehua Nuclear Power Technology Research Institute Co. , Ltd. , trans. Shanghai: Shanghai Scientific and Technical Academic Press, 2010.
    [2] 国家核安全局. 核电厂质量保证安全规定: HAF003—1991 [S]. 北京: 国家核安全局, 1991.

    National Nuclear Safety Administration. Safety regulation on quality assurance of nuclear power plants: HAF003—1991 [S]. Beijing: National Nuclear Safety Administration, 1991.
    [3] 广东核电培训中心. 900 MW压水堆核电站系统与设备 [M]. 北京: 原子能出版社, 2005.

    Guangdong Nuclear Power Training Center. Devices & systems of 900 MW PWR [M]. Beijing: Atomic Energy Press, 2005.
    [4] 苗雨才, 尹玉杰. 阀门设计技术及相关标准体系表手册 [M]. 沈阳: 中国阀门信息网沈阳阀门研究所, 2004.

    MIAO Y C, YIN Y J. Valve design technology and related standards system table manual [M]. Shenyang: China Valve Information Network Shenyang Valve Research Institute, 2004.
    [5] 国家环境保护总局. 民用核安全设备设计制造安装和无损检验监督管理规定(HAF601) [S]. 北京: 国家环境保护总局, 2007.

    State Environmental Protection Administration. Regulations on the supervision and administration of design, manufacture, installation and nondestructive inspection of civil nuclear safety equipment (HAF601) [S]. Beijing: State Environmental Protection Administration, 2007.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(5)  / Tables(2)

Article Metrics

Article views(40) PDF downloads(18) Cited by()

Related

Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant

doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010

Abstract:   Introduction  The operating pressure of the storage tank of the auxiliary feedwater system (ASG) in nuclear power plant is stabilized within the designed pressure range through the combined action of the back pressure control valve and the breathing valve. Abnormal pressure, overpressure or negative pressure deformation in the storage tank will affect the normal operation of the system and cause the failure of the safety function of the system. The performance of the back pressure control valve and breathing valve is very important. Based on the analysis of the existing problems, the back pressure control valve and breathing valve are improved to ensure the pressure stability of the pressure storage tank.   Method  According to the actual operation experience, the structure of the back pressure control valve and the breathing valve were compared, and the two kinds of valves were improved from the valve structure, sealing type, etc.   Results  The performance of the improved equipment was stable and no abnormal phenomena such as over-high pressure alarm occurred during use.   Conclusion  The improved back pressure control valve and breathing valve have been widely used in practical projects, providing certain identification for the subsequent treatment of similar valve problems.

TAN Xiaolong, LI Longhui, JIA Yong, JIANG Xiaohong. Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 64-67. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010
Citation: TAN Xiaolong, LI Longhui, JIA Yong, JIANG Xiaohong. Improvement and Application of Back Pressure Control Valve and Breathing Valve for Auxiliary Feedwater System in Nuclear Power Plant[J]. SOUTHERN ENERGY CONSTRUCTION, 2023, 10(S1): 64-67. doi: 10.16516/j.gedi.issn2095-8676.2023.S1.010
    • 辅助给水系统[1](ASG)是压水堆核电站专设安全设施之一,其安全作用是在主给水系统(ARE)的任何一个环节发生故障时,作为应急手段向蒸汽发生器二次侧供水,使一回路维持一个冷源,排除堆芯剩余功率,直到余热排出系统(RRA)投入运行。系统由辅助给水储罐、辅助给水泵和相应阀门等组成。

      CPR1000机组中,辅助给水储罐为核安全3级设备[2],为了防止储罐因超压或负压而损坏,系统为储罐设置了一个背压调节阀和一个呼吸阀。为了保证储罐[3]内的水一直处于良好的除氧和除盐状态,其上部空间用氮气覆盖,氮气压力为10~12 kPa(g)。储罐压力过高时,通过背压调节阀排放,设定压力值为12 kPa(g)。当储罐内气压超过12 kPa(g)并达到12.7 kPa(g)时,呼吸阀开始呼气,进行超压保护,若储罐内气压为−0.75 kPa(g)时,呼吸阀开始吸气进行负压保护,系统流程简图如图1所示。

      Figure 1.  System diagram

      正常情况下(储罐内压力在正常压力范围内)该背压调节阀和呼吸阀均处于关闭状态,当储罐内压力波动时升高或降低,阀门动作以维持储罐内压力在合理范围。

    • 正常情况,该阀门处于关闭状态(如图2所示),当阀前压力增大到设定点时,介质通过阀盖上内导压孔作用在大膜片上并控制阀芯向上移动,阀门打开进行泄压。该阀门可通过上部的调节螺母来调整阀门的设定压力值,以适应系统工况变化。

      Figure 2.  Diagram of back pressure control valve before improvement

    • 正常状态下,储罐压力在设定压力范围内,呼气阀芯和吸气阀芯处于闭合状态,该阀不动作(如图3所示)。当储罐内压力升高到超过设定压力时,呼气阀芯被气压顶开,气体经呼气阀座被排出;当储罐内压力下降低到超过设定负压值,吸气阀芯被大气压顶开,空气经阻火层和阀座进入储罐。

      Figure 3.  Diagram of breathing valve before improvement

      向储罐注入介质或由储罐向外输送介质时或当环境温度改变等原因都会影响储罐内气相覆盖层压力波动,呼吸阀能消除由上述原因引起的压力波动,维持储罐压力恒定。

    • 电站调试期间对储罐充水时,主控室出现高压报警。经排查,问题集中在保护储罐安全的背压减压阀和呼吸阀,为此,开展了对阀门的改型工作。

    • 背压减压阀阀门运行压力较低,需要微压下的开启,满足一定的排放量,因此需要有较高的控制精度、动作灵敏性和密封性。因结构限定,阀门在整定压力时,不能维持阀门全开的开度,无法实现微压下的连续流量导致排量不足,由于阀门在微压下运行,调节螺母调节压力波动较大,不易满足阀门技术参数要求(如表1所示),最终导致正常工况下发生超压报警。

      阀门运行要求阀门超压要求
      整定压力/
      kPa(g)
      回座压力/
      kPa(g)
      超压值/
      kPa(g)
      排放量
      m3/h(STP)
      阀门出口压力/
      kPa(g)
      12大于11.5约0.3约316约0.71

      Table 1.  Technical parameter requirements of back pressure control valve

      阀门高压报警值为13 kPa(g),根据核算阀门在超过整定压力约7%时能完全开启(约12.8 kPa(g))。如果阀门直接安装在储罐排气口,阀门能直接感受储罐的压力,当储罐压力达到12.8 kPa(g)时阀门能完全开启,阀门的排量可满足要求,储罐不会产生超压报警。

      因安装位置受限,阀门无法直接安装在储罐上,在阀门与储罐之间有1个隔离阀、4个弯头以及一段直管道,在介质排放时,阀门与储罐之间存在一定压力损失。若储罐内压力达到报警压力,且排放达到设计要求的流量,阀门入口压力仅有12.09 kPa(g),阀门感受到的超压约0.75%,在此条件下,阀门无法完全开启,排量达不到系统要求。

    • 呼吸阀功能是防止储罐的超压和负压,阀门技术参数要求如表2所示。经分析,原阀门的排量不足主要原因:一是保持阀门密封的弹簧刚度过大,阀门在较小的超压时阀门无法完全开启;另外一个原因是原阀门为板焊结构,流道折弯较多,流道不具有流线型,阀门流通面积较小和流阻系数较大。

      吸气压力/kPa(g)吸气流量/(m3·h−1)呼气压力/kPa(g)呼气流量/(m3·h−1)
      约−1.4约400约14约316

      Table 2.  Technical parameter requirements of breathing valve

    • 为满足要求,主要从以下几个方面对原有阀门进行改进优化设计:

      1)阀门结构换型为先导式结构,先导式背压调节阀调节精度更高,反应更加灵敏,满足对阀门开启时阀前阀后压力控制的要求。

      2)阀门密封由金属平面密封优化为软密封(增强聚四氟乙烯),避免了金属平面密封处遇水可能会出现水吸合现象,提高阀门开启压力的精度。

      3)阀门开启方式由向上开启的平板式阀瓣优化为向下开启的锥形阀瓣,有助于阀门的开启泄压。

      改型后阀门结构图如图4所示:

      Figure 4.  Structure diagram of back pressure control valve after improvement

      改型后阀门由先导阀和主阀组成,工作原理如下:

      正常情况阀门处于常闭状态,阀前压力通过导压管进入先导阀,当阀前压力增大时,作用在先导阀膜片上的力增加,克服弹簧力使先导阀阀芯开启,介质流进主膜室,推动阀杆向下运动,从而打开阀门进行泄压,通过右侧小节流阀可以微调阀门的主阀驱动压力(小节流阀的主要作用是调节阀门的响应时间)。该阀门采用橡胶膜片作为平衡元件,消除了大部分的不平衡力,降低了由于阀前压力波动对阀门性能产生的影响。

    • 通过减小弹簧刚度、增大流道面积和采用流线型流道的改进方案,减少流阻。改进后的呼吸阀结构如图5所示:

      Figure 5.  Diagram of breathing valve after improvement

    • 改型后的背压调节阀和呼吸阀已用于南方某核电项目[5]。机组热态功能试验期间储罐没有出现超压报警现象,通过各项监测,改型后阀门运行良好,保障了储罐的压力边界完整性,提高了机组安全性能。本文通过对核电站辅助给水系统储罐超压报警问题分析,执行背压调节阀和呼吸阀进行结构优化设计措施,成功解决了辅助给水系统储罐超压报警问题,为该类型阀门国产化提供参考。

Reference (5)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return