• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 6 Issue 2
Jul.  2020
Turn off MathJax
Article Contents

Kaiyun ZHENG. Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 29-33. doi: 10.16516/j.gedi.issn2095-8676.2019.02.005
Citation: Kaiyun ZHENG. Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 29-33. doi: 10.16516/j.gedi.issn2095-8676.2019.02.005

Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source

doi: 10.16516/j.gedi.issn2095-8676.2019.02.005
  • Received Date: 2018-07-25
  • Rev Recd Date: 2018-10-30
  • Publish Date: 2020-07-11
  •   [Introduction]  Because of the low temperature parameter, the power generation efficiency of the small modular PWR nuclear power plant is less than 30%.  [Method]  In order to improve the efficiency of the nuclear energy utilization, the small modular reactor can be combined with the renewable energy and the advanced supercritical CO2 cycle was used as the thermal energy conversion device. Based on a supercritical CO2 cycle with a simple regenerative mode, adding one intercooling and one reheating, a new hybrid power generation system was integrated with a small reactor and a solar energy source and a biomass energy source, and the efficiency of the power generation was analyzed.  [Result]  The results show that the power generation efficiency is 34.13% and 41.22% for the system with the inlet temperature of the high pressure turbine at 390 ℃ and 550 ℃, respectively. In addition, the analysis of the safety of the system shows that the CO2 itself has the nuclear safety property, and the supercritical CO2 cycle can also be used as the passive waste heat discharge system of the reactor to ensure that the reactor continuously exhaust the decay heat under the severe accident condition.  [Conclusion]  Supercritical CO2 cycle power system integrated with small modular reactor and renewable energy source has good power generation efficiency and nuclear safety.
  • [1] IAEA. Advances in small modular reactor technology developments [M]. Vienna:International Atomic Energy Agency,2014.
    [2] AHN Y, BAE S J, KIM M,et al. Review of supercritical CO2 power cycle technology and current status of research and development [J]. Nuclear Engineering and Technology,2015,47(6): 647-661.
    [3] 郑开云. 超临界二氧化碳循环应用于火力发电的研究现状 [J]. 南方能源建设,2017,4(3): 39-47.

    ZHENG K Y.Current status of research on the application of supercritical carbon dioxide power cycle in fossil fired power generation [J]. Southern Energy Construction,2017,4(3): 39-47.
    [4] WEILAND N. THIMSEN D. A practical look at assumptions and constraints for steady state modeling of sCO2 Brayton power cycles [C]//Southwest Research Institute. Proceedings of Supercritical CO2 Power Cycle Symposium,San Antonio,Mar. 28-31,2016. San Antonio:Southwest Research Institute,2016:1-14.
    [5] KULHANEK M,DOSTAL V. Thermodynamic analysis and comparison of supercritical carbon dioxide cycles [C]//Southwest Research Institute. Proceedings of Supercritical CO2 Power Cycle Symposium,Boulder,Colorado,May 24-25,2011. Boulder:Southwest Research Institute,2011:2-8.
    [6] 郑开云. 超临界二氧化碳布雷顿循环效率分析 [J]. 发电设备,2017,31(5): 305-309.

    ZHENG K Y. Efficiency analysis of supercritical carbon dioxide Brayton cycle [J]. Power Equipment,2017,31(5): 305-309.
    [7] BURHANUDDIN H, KUNE Y. Computational analysis of supercritical CO2 Brayton cycle power conversion system for fusion reactor [J]. Energy Conversion and Management,2012,63(11): 38-43.
    [8] JENSEN S E, NONBOL E. Description of the magnox type of gas cooled reactor(MAGNOX) [M]. Vienna:International Atomic Energy Agency,1998.
    [9] DOSTAL V. A supercritical carbon dioxide cycle for next generation nuclear reactors [D]. Massachusetts:Massachusetts Institute of Technology,2004.
    [10] LAVANTE D V,KUHN D,LAVANTE E V. Self-propelling cooling systems:back-fitting passive cooling functions to existing nuclear power plants [C]//American Society of Mechanical Engineers. Proceedings of the 2012 20th International Conference on Nuclear Engineering,California,July 30-Aug. 3,2012. California:American Society of Mechanical Engineers,2012:663-672.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(3)  / Tables(2)

Article Metrics

Article views(446) PDF downloads(37) Cited by()

Related

Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source

doi: 10.16516/j.gedi.issn2095-8676.2019.02.005

Abstract:   [Introduction]  Because of the low temperature parameter, the power generation efficiency of the small modular PWR nuclear power plant is less than 30%.  [Method]  In order to improve the efficiency of the nuclear energy utilization, the small modular reactor can be combined with the renewable energy and the advanced supercritical CO2 cycle was used as the thermal energy conversion device. Based on a supercritical CO2 cycle with a simple regenerative mode, adding one intercooling and one reheating, a new hybrid power generation system was integrated with a small reactor and a solar energy source and a biomass energy source, and the efficiency of the power generation was analyzed.  [Result]  The results show that the power generation efficiency is 34.13% and 41.22% for the system with the inlet temperature of the high pressure turbine at 390 ℃ and 550 ℃, respectively. In addition, the analysis of the safety of the system shows that the CO2 itself has the nuclear safety property, and the supercritical CO2 cycle can also be used as the passive waste heat discharge system of the reactor to ensure that the reactor continuously exhaust the decay heat under the severe accident condition.  [Conclusion]  Supercritical CO2 cycle power system integrated with small modular reactor and renewable energy source has good power generation efficiency and nuclear safety.

Kaiyun ZHENG. Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 29-33. doi: 10.16516/j.gedi.issn2095-8676.2019.02.005
Citation: Kaiyun ZHENG. Supercritical CO2 Cycle Power System Integrated with Small Modular Reactor and Renewable Energy Source[J]. SOUTHERN ENERGY CONSTRUCTION, 2019, 6(2): 29-33. doi: 10.16516/j.gedi.issn2095-8676.2019.02.005
  • 当今世界正在经历一场能源革命,能源清洁低碳发展成为时代主题。我国在2016年底发布了《能源生产和消费革命战略(2016—2030)》,提出核能和可再生能源将持续增长,在2050年实现非化石能源占比超过一半。先进核能技术、可再生能源技术将在能源技术革命中扮演重要角色。

    在核电领域,虽然新一代的大型商用堆因成本优势不足,在近年来发展缓慢,但是,小型模块化反应堆(小型堆)发展迅速。小型堆有多种堆型,世界各国当前开发的小型堆包括:压水堆、高温气冷堆、钠冷快堆、铅铋冷却快堆等,其中绝大多数为压水堆,例如:NuScale(美国)、Westinghouse SMR(美国)、mPower(美国)、SMART(韩国)、CAREM-25(阿根廷)、VVER-300(俄罗斯)、ACP-100(中国)[1]。压水堆也是大型商用堆中最主要的堆型,技术成熟,安全性高,所以,以现有的大型压水堆为基础开发的小型压水堆技术趋于成熟,比较适合快速商业化。

    然而,压水堆二回路温度较低(约280 ℃),小型压水堆热电转换效率不到30%,大型压水堆核电站效率也只有33%左右。将小型堆与可再生能源(如:太阳能热、生物质燃烧热)相结合具有潜在的优势:一是温度等级有高低之分,便于梯级利用;二是热源容量相近,便于匹配。通过合适的动力循环系统,可将核能和可再生能源进行整合。近年来,超临界CO2循环成为热点,并且被认为具有诸多潜在优势。CO2的临界点为31 ℃/7.4 MPa,在温度和压力超过临界点时的状态为超临界态。CO2化学性质稳定、密度高、无毒性、低成本,循环系统简单、结构紧凑、效率高、可空冷,超临界CO2循环可以与各种热源组合成发电系统,在火力发电、核能发电、太阳能热发电、余热发电、地热发电、生物质发电等领域均具有良好的应用前景[2,3]

    本文将借助超临界CO2循环的特点,将小型堆与可再生能源有机结合,组成新型混合发电系统,对系统的效率和安全性进行分析和研究。

  • 总体上,超临界CO2循环发电系统以小型堆(二回路)和可再生能源作为热源,其中前者加热温度较低,作为低温段热源,后者加热温度较高,作为高温段热源。小型堆和可再生能源的热功率按照工程上常用设计,两者大小相互匹配。小型堆的热功率大多在50 MWt~300 MWt,可选配聚光太阳能集热器或生物质直燃锅炉与小型堆相结合。

    超临界CO2循环采用简单回热循环的构架,并在此基础上增加一次间冷和一次再热,循环过程较为精简,热效率较高。超临界CO2循环布置如图1所示,对应的温-熵图如图2所示。根据图1所示,循环基本工艺过程为:主压缩机将冷态的CO2工质增压至高压,然后分为两路,一路通往低温回热器,另一路通往二回路换热器,然后两路工质汇合进入高温回热器,再进入太阳能换热器,太阳能换热器出来的高温高压CO2工质进入高压透平膨胀做功,高压透平排出的CO2工质再进入可再生能源再热器,然后进入低压透平继续膨胀做功,低压透平排出的工质依次进入高温回热器和低温回热器,接着进入预冷器冷却,再进入预压缩机增压,预压缩机出口工质经过间冷器,最后回到主压缩机。

    Figure 1.  Layout of supercritical carbon dioxide cycle based on small modular reactor and renewable energy

    Figure 2.  T-s diagram of supercritical carbon dioxide cycle based on small modular reactor and renewable energy

    上述布置的超临界CO2循环要获得高效率,还需要两方面的支持:一方面是深度回热,由于回热的热功率非常大,这就要求回热器的效率越高越好,通常设计值在95%以上;另一方面临界点附近压缩,此时工质物性接近液体,压缩耗功小,要求冷源温度尽量接近于CO2的临界温度,且越低越好。

    对于可再生能源为太阳能热的系统,太阳能具有间歇性,一方面可采用储热的方式解决,另一方面可利用小型堆热功率调节范围宽、响应快的性能,在太阳光辐射强度高时调低热功率,反之增大热功率,从而使小型堆与太阳能热相结合的系统可以带基本负荷发电。对于可再生能源为生物质燃烧热的系统,生物质可储存,系统没有间歇性,可稳定发电。

  • CO2工质的比热特征是小型堆与可再生能源两者可以结合的决定性条件,并使得两种热源在超临界CO2循环中温度对口、容量匹配。不同压力下工质的定压比热与温度的关系如图3所示:给定压力下,比热曲线在靠近临界点区域有一突出的大比热区,随着温度提高,比热趋于恒定,这一大比热区随着压力增大,其突出趋于缓和;给定温度下,在高温段,工质的压力越高,比热越大,但差别较小;在大比热区,不同压力下,工质比热曲线之间的差距非常大,利用这一比热特征,可将温度相对较低的小型堆热源与低温回热器联合使用,用于加热低温段的高压侧工质。可再生能源的温度等级较高,可仅用于加热从高温回热器高压侧出来的工质。

    Figure 3.  Relationship between specific heat at constant pressure and temperature for CO2 at various pressures

  • 针对图1所示的超临界CO2循环布置,基于小型堆与可再生能源的混合发电系统的效率分析分为两种情况:(1)高压透平进口温度为390 ℃,对应高温热源为槽式太阳能聚光集热系统;(2)高压透平进口温度为550 ℃,对应高温热源为塔式太阳能聚光集热系统或生物质直燃锅炉。循环热效率(ηt)定义为净输出功与二回路换热器和可再生能源加热器输入热量之比,即:

    ((1))

    式中:Wt为透平功率;Wc为压缩机功率;Qs为二回路换热器输入的热功率;Qr为可再生能源加热器输入的热功率。循环发电效率(ηe)定义为循环热效率扣除各种损失和辅助设备用电后的净发电效率。

    系统中主设备的性能参数选择参考相关文献报道[4,5,6]表1所示。同时,表1也列出循环系统假定参数,需要指出的是,这些参数的最优值需要结合实际工况制定,这里仅用于初步的分析计算以表明超临界CO2循环的效率潜力。系统效率分析采用美国国家标准与技术研究所(NIST)发布的REFPROP物性数据库。

    参 数 参数取值
    净输出电功率/MWe 100
    可再生能源加热器CO2侧热端温度(高压透平入口温度)/ ℃ 390、550
    高压透平入口压力/MPa 20
    高压透平出口压力/MPa 12
    低压透平出口压力/MPa 6
    预压缩机出口压力/MPa 8.5
    预冷器出口温度/ ℃ 35
    间冷器出口温度/ ℃ 35
    压缩机等熵效率/% 85
    透平等熵效率/% 90
    透平和压缩机机械效率/% 99
    发电机效率/% 98.5
    回热器最小温差/ ℃ 8
    二回路换热器CO2侧热端温度/ ℃ 280
    各个换热器压损/MPa 0.15
    预冷器压损/MPa 0.05
    间冷器压损/MPa 0.1
    辅助设备用电/% 0.5
    管道压损、散热、漏气及其它可能的损失/% 0.1

    Table 1.  Parameters for supercritical CO2 cycle

    两种情况的系统效率分析结果如表2所示,计算过程中须调整进入二回路换热器的CO2工质流量比例(分流比)直至二回路换热器和低温回热器热端出口的CO2工质温度均达到280 ℃。对于高压透平入口温度390 ℃的系统,系统发电效率34.13%,对于高压透平入口温度550 ℃的系统,系统发电效率41.22%。可见,超临界CO2循环系统有较高的效率,通过将小型堆与可再生能源相结合运行,使得小型堆输出的热能可以按远高于其独立运行的效率转变为电能。超临界CO2循环还可以通过循环布置优化、设备性能改进进一步挖掘效率潜力,例如:提高回热器效率,使最小温差降至5 ℃以下,并减少压损,循环效率可显著提高[7]

    计算结果 高压透平入口温度
    390 ℃ 550 ℃
    分流比 0.34 0.34
    小型堆输入热功率/MWt 125.05 91.48
    可再生能源输入热功率/MWt 167.95 151.10
    循环发电效率/% 34.13 41.22

    Table 2.  Efficiency analysis results of supercritical CO2 cycle

  • CO2是一种无色无味、不可燃的化合物,其化学性质稳定、无毒性,在化工、医药、食品等工业领域具有广泛的应用,并用于制作灭火器。CO2除了具备常规工业和生活中的安全性以外,在核电领域,CO2已通过工程应用证实是一种安全的一回路冷却剂[8],历史上,英国曾建造一批CO2冷却的石墨气冷堆(镁诺克斯反应堆),并在核电站的发展中占领先地位,后来由于轻水堆的发展,逐渐退出历史舞台。近年来,以超临界CO2为工质的动力循环成为国际上广泛关注的焦点,这一循环与第四代核反应堆(超临界水堆除外)具有绝佳的组合优势[9],一方面是具有更高的热效率,另一方面是具有更好的安全性,例如:在钠冷快堆中,可避免钠水反应。

    小型堆与超临界CO2循环相结合,除了具备CO2上述的安全性以外,超临界CO2循环还可以作为反应堆的余热排出系统[10]。当作为余热排出系统运行时,超临界CO2循环的启动不需要电机,而是依靠热量。反应堆通过自然循环将衰变热通过二回路换热器传递给CO2工质,工质热膨胀推动透平运转,继而透平推动共轴布置的压缩机和发电机工作。透平排出工质可通过旁路绕过回热器直接进入专门的空冷器冷却,再由压缩机增压后输送至二回路换热器。透平带动发电机工作,产生的电力供给空冷器风机运行,从而增强空冷器冷却效果。因此,超临界CO2循环可构成一套非能动的冷却系统,确保在严重事故工况下,反应堆持续排出衰变热。

  • 本文对集成小型堆和可再生能源的超临界CO2循环发电系统的效率和安全性进行了分析和研究,主要结论如下:

    1)将小型堆与太阳能、生物质能热源集成,对于高压透平入口温度390 ℃的系统,发电效率34.13%,对于高压透平入口温度550 ℃的系统,发电效率41.22%,系统效率比单纯的小型堆发电系统显著提高,并且机组出力提高,与太阳能结合,其负荷稳定性比单纯的太阳能聚光集热发电系统大幅提高。

    2)CO2本身是具备核安全属性的工质,超临界CO2循环还可以作为反应堆的非能动余热排出系统,确保在严重事故工况下,反应堆持续排出衰变热。

    3)从系统经济性角度,小型堆与可再生能源系统共用一套动力循环系统,设备投资成本显著减少。

Reference (10)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return