• Peer Review
  • Non-profit
  • Global Open Access
  • Green Channel for Rising Stars
Volume 8 Issue 1
Mar.  2021
Turn off MathJax
Article Contents

MA Weizhe,CHENG Weijie,ZHANG Shipeng,et al.Influence of Load Model to Out-of-step Oscillation Characteristics of Power System[J].Southern Energy Construction,2021,08(01):110-114. doi:  10.16516/j.gedi.issn2095-8676.2021.01.016
Citation: MA Weizhe,CHENG Weijie,ZHANG Shipeng,et al.Influence of Load Model to Out-of-step Oscillation Characteristics of Power System[J].Southern Energy Construction,2021,08(01):110-114. doi:  10.16516/j.gedi.issn2095-8676.2021.01.016

Influence of Load Model to Out-of-step Oscillation Characteristics of Power System

doi: 10.16516/j.gedi.issn2095-8676.2021.01.016
  • Received Date: 2020-06-11
  • Rev Recd Date: 2020-09-22
  • Publish Date: 2021-03-25
  •   Introduction  Load, as the part that ultimately consumes active power, has a very important impact on the stability of the system. Therefore, the influence of different load models on out-of-step oscillation characteristics of power system is studied in this paper.  Method  This paper took a large grid’s regional discontinuity as the research target to comprehensively analyze the effects of different load models on the oscillation center and action of out of step splitting device using BPA program developed by China Electric Power Research Institute.  Result  The simulation results show when using the ZIP static load model, the line Ucos curve demonstrates the best periodic integrity , as the proportion of induction motor type load increases, the Ucos curve’s periodic integrity becomes worse, it even leads to a subversive change in the conclusion whether the out of step splitting device can react. In addition, different load models also cause the oscillation center migration.  Conclusion  Therefore, the credibility of simulation results can only be guaranteed by using the most realistic load model.
  • [1] 邹德旭,贺仁睦,司大军. 负荷模型对电力系统动态稳定的影响 [J]. 电力系统及其自动化学报,2011,23(1):118-122.

    ZOUD X,HER M,SID J. Effects of load model on dynamic stability in power system [J]. Proceedings of the CSU-EPSA,2011,23(1):118-122.
    [2] 应林志,王建全. 负荷模型对特高压接入浙江电网暂态稳定分析的影响 [J]. 华东电力,2011,39(1):0121-0124.

    YINGL Z,WANGJ Q. Impact of load model on transient stability analysis of connection of ultra-high voltage to Zhejiang grid [J]. East China Electric Power,2011,39(1):0121-0124.
    [3] 邱丽萍,金小明,林勇,等. 负荷模型对电力系统仿真计算的影响 [J]. 电力系统及其自动化学报,2014,26(11):87-90.

    QIUL P,JINX M,LINY,et al. Impact of load model in power system simulation [J]. Proceedings of the CSU-EPSA,2014,26(11):87-90.
    [4] 赵静波,鞠平,施佳君,等. 电力系统负荷建模研究综述与展望 [J]. 河海大学学报(自然科学版),2020,48(1):87-94.

    ZHAOJ B,JUP,SHIJ J,et al. Review and prospects for load modeling of power system [J]. Journal of Hehai University(Natural Sciences),2020,48(1):87-94.
    [5] 刘云. 巴西电网失步解列情况分析及启示 [J]. 电网技术,2019,43(4):1111-1121.

    LIUY. Analysis on out-of-step separation in brazilian power grid and its inspiration [J]. Power System Technology,2019,43(4):1111-1121.
    [6] 汤涌. 基于响应的电力系统广域安全稳定控制 [J]. 中国电机工程学报,2014,34(29):5041-5050.

    TANGY. Response-based wide area control for power system security and stability [J]. Proceedings of the CSEE,2014,34(29):5041-5050.
    [7] 丁剑,马世英,赵伟,等. 大电网失步解列难点问题及隔离策略初步构想 [J]. 高电压技术,2017,43(7):2394-2401.

    DINGJ,MAS Y,ZHAOW,et al. Difficulties and preliminary conception of isolation strategy on power grid out-of-step islanding [J]. High Voltage Engineering,2017,43(7):2394-2401.
    [8] 王英涛,汤涌,丁理杰,等. 新型电力系统失步广域控制技术研发 [J]. 电网技术,2013,37(7):1827-1833.

    WANGY T,TANGY,DINGL J,et al. Research and development of new wide area out-of-step control technology for power systems [J]. Power System Technology,2013,37(7):1827-1833.
    [9] 屈星,李欣然,宋军英,等. 考虑配电网调压的综合负荷模型 [J]. 电工技术学报,2018(4):759-770.

    QUX,LIX R,SONGJ Y,et al. Composite load model considering voltage regulation of distribution network [J]. Guangdong Electric Power,2018(4):759-770.
    [10] 刘婷,尚慧玉. 负荷模型对电网安全稳定计算分析的影响 [J]. 电工技术,2020(4):123-124.

    LIUT,SHANGH Y. Influence of load model on calculation and analysis of power grid security and stability [J]. Electric Engineering,2020(4):123-124.
    [11] 刘媛杰,李霞,李云阳. 常用电力负荷模型的分析研究 [J]. 塔里木大学学报,2015,27(4):99-104.

    LIUY J,LIX,LIY Y. Analysis of commonly used power load model [J]. Journal of Tarim university,2015,27(4):99-104.
    [12] 王若愚,谢莹华. 深圳电网负荷分类及构成分析 [J]. 南方能源建设,2015,2(3):43-46.

    WANGR Y,XIEY H. Analysis on Shenzhen grid load classification and composition [J]. Southern Energy Construction,2015,2(3):43-46.
    [13] 谢家安,莫颖生,王玉荣. COVID-19重大疫情下的电网负荷趋势评估新方法 [J].广东电力,2020,30(7):42-48.

    XIEJ A, MOY S, WANGY R. A new method for evaluating power load trends in major outbreaks of COVID-19 [J].Guangdong Electric Power,2020,30(7):42-48.
  • 通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

Figures(4)

Article Metrics

Article views(352) PDF downloads(30) Cited by()

Related

Influence of Load Model to Out-of-step Oscillation Characteristics of Power System

doi: 10.16516/j.gedi.issn2095-8676.2021.01.016

Abstract:   Introduction  Load, as the part that ultimately consumes active power, has a very important impact on the stability of the system. Therefore, the influence of different load models on out-of-step oscillation characteristics of power system is studied in this paper.  Method  This paper took a large grid’s regional discontinuity as the research target to comprehensively analyze the effects of different load models on the oscillation center and action of out of step splitting device using BPA program developed by China Electric Power Research Institute.  Result  The simulation results show when using the ZIP static load model, the line Ucos curve demonstrates the best periodic integrity , as the proportion of induction motor type load increases, the Ucos curve’s periodic integrity becomes worse, it even leads to a subversive change in the conclusion whether the out of step splitting device can react. In addition, different load models also cause the oscillation center migration.  Conclusion  Therefore, the credibility of simulation results can only be guaranteed by using the most realistic load model.

MA Weizhe,CHENG Weijie,ZHANG Shipeng,et al.Influence of Load Model to Out-of-step Oscillation Characteristics of Power System[J].Southern Energy Construction,2021,08(01):110-114. doi:  10.16516/j.gedi.issn2095-8676.2021.01.016
Citation: MA Weizhe,CHENG Weijie,ZHANG Shipeng,et al.Influence of Load Model to Out-of-step Oscillation Characteristics of Power System[J].Southern Energy Construction,2021,08(01):110-114. doi:  10.16516/j.gedi.issn2095-8676.2021.01.016
  • 电力系统由发电机、输电网络和负荷终端等主要元件组成1。负荷作为最终消耗有功功率的部分,对系统的稳定起着十分重要的影响2。前期的大量研究表明,不同的负荷模型对系统功角稳定、电压稳定、频率稳定均有不同的影响,甚至会产生颠覆性的变化3-4

    目前,国内失步解列装置中的失步判别原理主要有3种:Ucosφ法、相位角法、循序阻抗法5-8。三种判据的数学表达式均与站点电压及电压、电流的相位角有关,另外,振荡中心的位置变化也与两侧电压幅值有关。因此,从理论角度分析,负荷模型对系统的失步振荡特性同样也具有重要影响。

    为此,本文以某大型电网为研究对象,采用中国电力科学研究院的BPA程序,开展仿真分析计算。重点从不同负荷模型对振荡中心的位置及失步解列装置的动作情况方面来分析对系统失步振荡特性的影响程度。

  • 负荷模型一般分为静态负荷模型、动态负荷模型及综合负荷模型9-12

  • 静态负荷模型通常采用恒定阻抗、恒定电流和恒定功率的线性组合来表示。某些时候,为了分析负荷的频率特性,在ZIP模型之中,可以加入一个频率因子。ZIP静态负荷模型如式(1)

    P=P0ap(UU0)2+bp(UU0)+cp1+dp*df*f0Δf*Q=Q0ap(UU0)2+bp(UU0)+cp1+dp*df*f0Δf* ((1))

    式中:P0为有功功率初始值(MW);Q0为无功功率初始值(MW);电压二次项相当于恒定阻抗负荷,电压一次相当于恒定电流负荷(I),电压零次项相当于恒定功率负荷(P),1+dp*df*f0Δf*为负荷的频率特性。

  • 动态负荷模型结构由非机理式和机理式两大类。机理式均是以感应电动机模型为基础,有三阶机电暂态模型和一阶机械暂态模型等,其中三阶模型能较好的反映感应电动机动态特性。

  • 采用三阶感应电动机并联负荷静态特性的综合负荷模型结构,是目前最常用的模型。通过设置不同的占比,产生不同的负荷模型。如华东电网采用的60%感应电动机并联40%恒阻抗、南方电网采用的50%感应电动机并联50%恒阻抗等。

  • 以某大型电网500 kV主网架为例,如图1所示。选取直流1+直流2双极闭锁稳控拒动和XLS站三相故障主保护拒动出线全失2个故障作为算例,重点研究对断面1的振荡中心特性及失步解列装置动作情况的影响。其中,直流1+直流2双极闭锁稳控拒动故障导致大量潮流迂回到交流断面上,引起区域间断面1失步振荡;XLS站三相故障主保护拒动出线失压导致断面1的一个通道断开,引起断面其他通道失步振荡。失步解列装置动作判据采用Ucosφ轨迹法。主要算例采用3种负荷模型:(1)综合负荷模型:50%Ⅲ型马达+50%恒阻抗模型;(2)静态30%恒阻抗+40%恒电流+30%恒功率模型,简称静态3-4-3ZIP模型;(3)70%Ⅲ型马达+30%恒阻抗模型。马达参数为:定子电阻Rs 0.02,定子电抗Xs 0.18,激磁电抗Xm 3.5,转子电阻Rr 0.02,转子电抗Xr 0.12,惯性时间常数Tj 2。

    Figure 1.  Schematic diagram of the 500 kV main grid frame of a large grid

  • 以直流1+直流2双极闭锁稳控拒动故障为例,经仿真分析,采用不同的负荷模型,振荡中心均位于断面1附近(GL-XLS线、LD-HZ线、HZ-LUD线、LB-WZ线及YL-MM线),不同之处是在HZ-LUD通道上,采用不同的负荷模型振荡中心的位置有所不一样,详见图2。由图2可知,采用ZIP模型时,振荡中心在HZ-LUD线上;采用50%Ⅲ型马达+50%恒阻抗模型时,振荡中心前2周期在HZ-LUD线后迁移至LD-HZ线;采用70%Ⅲ型马达+30%恒阻抗模型时,振荡中心主要在HZ-LUD线上。总之,负荷模型的不同将影响振荡中心的迁移变化。

    Figure 2.  Phase difference curve of both sides of the LD-HZ and HZ-LUD lines

    其主要原因是由于负荷模型的不同,将导致线路两侧的电压幅值差值不等,从而影响到振荡中心的位置。

  • 以直流1+直流2双极闭锁稳控拒动故障时GL-XLS线XLS侧、HZ-LUD线HZ侧、WZ-LUD线WZ侧、YL-MM线MM侧Ucosφ曲线为例进行分析。由图3可知,采用ZIP静态负荷模型,线路Ucosφ曲线周期完整性最好,两广断面所有线路均能正确判出并解列断面;但随着感应电动机类型负荷的占比增加,Ucosφ曲线周期完整性变差,甚至会导致失步解列装置能否动作的结论发生颠覆性变化。如WZ-LUD线WZ侧Ucosφ曲线,采用ZIP负荷模型,第二周期幅值范围为[-1,1],采用70%Ⅲ型马达+30%恒阻抗模型,第二周期Ucosφ幅值范围为[-0.26,0.42]。根据装置的逻辑判别原理,Ucosφ幅值从大于0.3的值穿越到小于-0.3,才算完成一个周期,因此,存在采用70%Ⅲ型马达+30%恒阻抗模型时,周期定值整定为2时,WZ侧失步解列装置不能解开WZ-LUD线的情况。

    Figure 3.  Ucosφ curve of XLS side of GL-XLS Line, HZ side of HZ-LUD Line, WZ side of WZ-LUD Line, MM side of YL-MM Line when DC1+DC2 bipolar blocking failure that stability control device refused to move

    以XLS站三相故障主保护拒动出线全失时LUD-WZ线LUD侧Ucosφ曲线为例进行分析。由图4可知,采用ZIP静态负荷模型,线路Ucosφ曲线周期完整性最好,但随着感应电动机类型负荷的占比增加,Ucosφ曲线周期完整性变差。与直流1+直流2双极闭锁稳控拒动故障算例结论一致。

    Figure 4.  Ucosφ curve of LUD side of LUD-WZ Line when XLS station three-phase failur, main protection refusing to operate and failure of all outgoing lines happened

    其主要原因是因为故障恢复阶段马达电磁转矩减小,但机械功率依然保持在较高的水平,随着马达逐渐减小,滑差在短时间内逐渐拉大,马达将从系统内吸收大量无功,导致系统电压降低,所以Ucosφ曲线的周期完整性差;而ZIP负荷吸收的无功功率与电压同方向变化,在故障后的恢复期间会随着系统电压的下降而下降,在一定程度上缓解了系统的无功缺额,有利于电压的恢复,所以Ucosφ的周期完整性较好。

  • 负荷作为电力系统的一个重要组成部分,其模型和参数选择与实际负荷的吻合程度对电力系统相应的失步振荡特性分析结论具有重要影响。

    不同模型结构对系统失步振荡特性分析影响很大。以对失步解列装置动作情况的影响为例,采用ZIP静态负荷模型,线路Ucosφ曲线周期完整性最好;随着感应电动机类型负荷的占比增加,Ucosφ曲线周期完整性变差,甚至会导致失步解列装置能否动作的结论发生颠覆性变化。由仿真结果可知,感应电动机模型所在比重越大,分析结论越偏于保守,甚至有可能是截然相反的。因此,采用最反映实际情况的负荷模型才能有效保证仿真结果的可信度,即不能过于乐观,也不能过于保守。

Reference (13)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return